K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

2xy.(3x^2y-4xy^2)-1/2x^2y^2.(12x-16y)+xy.(3-13xy)+13.(x^2y^2-1)

15 tháng 3 2020

\(2A-B=\left(7x^2y^3-6xy^4+5x^3y-1\right).2-\left(-x^3y-7x^2y^3-xy^4\right)\)

=>\(2A-B=\left(14x^2y^3-12xy^4+10x^3-2\right)-\left(-x^3y-7x^2y^3+5-xy^4\right)\)

=>\(2A-B=\left(phá\right)ngoặc\)

=>\(2A-B=\left(14x^2y^3-7x^2y^3\right)+\left(10x^3y+x^3y\right)-12xy^4-xy^2+\left(-2+5\right)\)

=>\(2A-B=7x^2y^3+11x^3y-12xy^4-xy^2+3\)

học giỏi

a: M=3/4xy^2-2x^2y+2y^3-1/3x^2+1/2x^2y-5xy^2+x^3-y^3

=y^3-1/3x^2+x^3-17/4xy^2-3/2x^2y

13 tháng 3 2018

trả lời hộ với mai thi rồi

1 tháng 4 2017

M = 7x2y2 - 2xy - 5y3 - y2 + 5x4

N = -x2y2 - 4xy + 3y3 - 3y2 + 2x4

P = -3x2y2 + 6xy + 2y3 + 6y2 + 7

M+N+P = 7x2y2 - 2xy - 5y3 - y2 + 5x4 + (-x2y2 - 4xy + 3y3 - 3y2 + 2x4) + (-3x2y2 + 6xy + 2y3 + 6y2 + 7)

M+N+P = 7x2y2 - 2xy - 5y3 - y2 + 5x4 - x2y2 - 4xy + 3y3 - 3y2 + 2x4 - 3x2y2 + 6xy + 2y3 + 6y2 + 7

M+N+P = (7x2y2 - x2y2 - 3x2y2) - (2xy + 4xy - 6xy) - (5y3 - 3y3 - 2y3) - ( y2 + 3y2 - 6y2 ) + ( 5x4 + 2x4 ) + 7

M+N+P = 3x2y2 + 2y2 + 7x4 + 7

Ta có : M+N+P = 3x2y2 + 2y2 + 7x4 + 7

Vì 3x2y2 + 2y2 + 7x4 \(\ge\) 0

7 > 0

=> 3x2y2 + 2y2 + 7x4 + 7 > 0

=> M+N+P > 0 với mọi x,y

=> Ít nhất 1 trong 3 đa thức đã cho có giá trị dương với mọi x,y

1 tháng 4 2017

Ta có:

M +N +P = (7x2y2 -2xy -5y3 -y2 +5x4) +(-x2y2 -4xy +3y3 -3y2 +2x4) +(-3x2y2 +6xy +2y3 +6y2 +7)

= 7x2y2 -2xy -5y3 -y2 +5x4 -x2y2 -4xy +3y3 -3y2 +2x4 -3x2y2 +6xy +2y3 +6y2 +7

= (7x2y2 -x2y2 -3x2y2) +(-2xy -4xy +6xy) +(-5y3 +3y3 +2y3) +(-y2 -3y2 +6y2) +(5x4 +2x4) + 7

= 3x2y2 + 2y2 + 7x4 + 7

\(x^2\ge0;y^2\ge0\Rightarrow3x^2y^2\ge0​\) (1)

\(y^2\ge0\Rightarrow2y^2\ge0\) (2)

\(x^4\ge0\Rightarrow7x^4\ge0\) (3)

7 > 0 (4)

Từ (1), (2), (3) (4) => \(3x^2y^2+2y^2+7x^4+7\ge0\)

Vậy ít nhất 1 trong 3 đa thức M, N, P có giá trị dương với mọi x, y