Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{4}-\sqrt{3}\right)}+...+\frac{\sqrt{2018}-\sqrt{2017}}{\left(\sqrt{2017}+\sqrt{2018}\right)\left(\sqrt{2018}-\sqrt{2017}\right)}\)
\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{2018}-\sqrt{2017}}{2018-2017}\)
\(=\frac{\sqrt{2}-1}{1}+\frac{\sqrt{3}-\sqrt{2}}{1}+\frac{\sqrt{4}-\sqrt{3}}{1}+...+\frac{\sqrt{2018}-\sqrt{2017}}{1}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2018}-\sqrt{2017}=\sqrt{2018}-1\)
\(=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2017}+\sqrt{2018}}\)
\(=-\sqrt{1}+\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2018}\)
\(=-\left(\sqrt{1}+\sqrt{2018}\right)\)
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.........+\frac{1}{\sqrt{2017}+\sqrt{2018}}\)
\(=\frac{2-1}{\sqrt{1}+\sqrt{2}}+\frac{3-2}{\sqrt{2}+\sqrt{3}}+........+\frac{2018-2017}{\sqrt{2017}+\sqrt{2018}}\)
\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}+\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}+......+\)
\(\frac{\left(\sqrt{2018}-\sqrt{2017}\right)\left(\sqrt{2018}+\sqrt{2017}\right)}{\sqrt{2017}+\sqrt{2018}}\)
\(=\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+........+\left(\sqrt{2018}-\sqrt{2017}\right)\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+......+\sqrt{2018}-\sqrt{2017}\)
\(=-\sqrt{1}+\sqrt{2018}=\sqrt{2018}-\sqrt{1}\)
Gọi vế trái BPT là A.
Xét biểu thức tổng quát:
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{\left[n\left(n+1\right)\right]^2}}\\ =\frac{\sqrt{n^2\left(n^2+2n+1\right)+n^2+2n+1+n^2}}{n\left(n+1\right)}\\ =\frac{\sqrt{n^4+2n^3+3n^2+2n+1}}{n\left(n+1\right)}\\ =\frac{\sqrt{\left(n^2+n+1\right)^2}}{n\left(n+1\right)}\\ =\frac{n^2+n+1}{n\left(n+1\right)}\\ =\frac{n\left(n+1\right)+n+1-n}{n\left(n+1\right)}\\ =1+\frac{1}{n}-\frac{1}{n+1}\)
Suy ra:
\(A=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2017}-\frac{1}{2018}\)
\(=\left(1+1+...+1\right)+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\right)\) (2018 số hạng 1)
\(=2018+\frac{1}{2}-\frac{1}{2018}< 2018\)
Vậy \(A< 2018\left(đpcm\right)\).
Chúc bạn học tốt nha.
cảm ơn bạn nhé, mình đag ko bt cách chứng minh biểu thức tổng quát ;)
bạn tìm trong nâng cao phát triển toán 9 tập 1 ấy nó có ở đấy
\(\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2017^2}+\frac{1}{2018^2}}\)\)
Với n thuộc N*, ta có:
\(\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{2\left(n+1-n-1\right)}{n\left(n+1\right)}}\)\)
\(\(=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2.1.\frac{1}{n}-2.1.\frac{1}{n+1}-2.\frac{1}{n}.\frac{1}{\left(n+1\right)}}\)\)
\(\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n-1}\right)^2}=1+\frac{1}{n}-\frac{1}{n-1}\)\). Áp dụng vô bài, ta có:
\(\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{2017^2}+\frac{1}{2018^2}}\)\)
\(\(=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2017}-\frac{1}{2018}\)\)
\(\(=2016+\frac{1}{2}-\frac{1}{2018}=2016\frac{504}{1009}\)\)
P/s: Lại là thằng quỷ Thắng
Xét số hạng tổng quát
\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}=1^2+\left(\frac{1}{k}\right)^2+\left(\frac{1}{k+1}\right)^2+2.1.\frac{1}{k}-2.\left(\frac{1}{k}.\frac{1}{k+1}\right)-2.1.\frac{1}{k+1}\)
\(=\left(1+\frac{1}{k}-\frac{1}{k+1}\right)^2\)
( Vì \(\frac{1}{k}-\frac{1}{k\left(k+1\right)}-\frac{1}{k+1}=\frac{k+1-1-k}{k\left(k+1\right)}=0\) )
Vậy thì \(\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=1+\frac{1}{k}-\frac{1}{k+1}\)
Vậy \(A=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2017^2}+\frac{1}{2018^2}}\)
\(=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2017}-\frac{1}{2018}\)
\(=2016+\frac{1}{2}-\frac{1}{2018}=2016\frac{504}{1009}\)