\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

1. Tính:

a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)

b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)

c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)

d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)

2. Tính :

a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)

b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)

c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)

d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)

3. Tính :

a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)

b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)

c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)

d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

\(=\dfrac{1}{1}+\dfrac{1}{10}\)

\(=\dfrac{10}{10}-\dfrac{1}{10}\)

= \(\dfrac{9}{10}\)

Chế Kazuto Kirikaya thử tham khảo thử đi !!!

23 tháng 7 2017

Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya

d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)

5 tháng 3 2017

đặt \(M=\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}\)

ta có:

\(M=\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}\)

\(\Leftrightarrow M=\dfrac{3+4}{3.4}-\dfrac{4+5}{4.5}+\dfrac{5+6}{5.6}-\dfrac{6+7}{6.7}+\dfrac{7+8}{7.8}-\dfrac{8+9}{8.9}+\dfrac{9+10}{9.10}\) \(\Leftrightarrow M=\dfrac{3}{3.4}+\dfrac{4}{3.4}-\dfrac{4}{4.5}-\dfrac{5}{4.5}+\dfrac{5}{5.6}+\dfrac{6}{5.6}-\dfrac{6}{6.7}-\dfrac{7}{6.7}+\dfrac{7}{7.8}+\dfrac{8}{7.8}-\dfrac{8}{8.9}-\dfrac{9}{8.9}+\dfrac{9}{9.10}+\dfrac{10}{9.10}\) \(\Rightarrow M=\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{6}+\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{8}+\dfrac{1}{10}+\dfrac{1}{9}\) \(\Rightarrow M=\dfrac{1}{3}+\dfrac{1}{10}\)

\(\Rightarrow M=\dfrac{10}{30}+\dfrac{3}{30}\)

\(\Rightarrow M=\dfrac{13}{30}\)

vậy M = \(\dfrac{13}{30}\)

vậy \(\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}=\dfrac{13}{30}\)

5 tháng 3 2017

\(\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}+\dfrac{15}{7.8}-\dfrac{17}{8.9}+\dfrac{19}{9.10}=\dfrac{3+4}{3.4}-\dfrac{4+5}{4.5}+\dfrac{5+6}{5.6}-\dfrac{6+7}{6.7}+\dfrac{7+8}{7.8}-\dfrac{8+9}{8.9}+\dfrac{9+10}{9.10}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{7}{30}\)

20 tháng 2 2018

M=\(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+.....+\left(\dfrac{1}{2}\right)^{100}\)

ta có:

2M=\(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)

=>2M-M=1-\(\dfrac{1}{2^{100}}\)

=>M=1-\(\dfrac{1}{2^{100}}\)<1(đpcm)

chúc bạn học tốt ^ ^

20 tháng 2 2018

Cảm ơn bạn nhìu! yeu

2 tháng 10 2017

bài 3 : \(\left\{{}\begin{matrix}ab=2\\bc=3\\ca=54\end{matrix}\right.\)

hiển nhiên a;b;c =0 không phải nghiệm

\(\Leftrightarrow\left(abc\right)^2=2.3.54=18^2\)

\(\Leftrightarrow\left[{}\begin{matrix}abc=-18\\abc=18\end{matrix}\right.\)

abc=-18 => c=-9; a=-6; b=-1/3

abc=18 => c=9; a=6; b=1/3

14 tháng 7 2017

A) \(\dfrac{4^5.4^2}{16^4}=\dfrac{4^7}{\left(2^4\right)^4}=\dfrac{2^{14}}{2^{16}}=\dfrac{1}{4}\)

b)\(\dfrac{2^8.9^4}{6^6.8^3}=\dfrac{2^8.\left(3^2\right)^4}{2^6.3^6.\left(2^3\right)^3}=\dfrac{2^8.3^8}{2^{15}.3^6}=\dfrac{9}{128}\)

14 tháng 7 2017

c) \(\dfrac{6^3+3.6^2+3^3}{-13}=\dfrac{2^3.3^3+3.2^2.3^2+3^3}{-13}=\dfrac{2^3.3^3+3^3.2^2+3^3}{-13}=\dfrac{3^3.\left(2^3+2^2+1\right)}{-13}=\dfrac{3^3.13}{-13}=-9\)

23 tháng 3 2017

Ta có : \(\dfrac{1}{2^2}=\dfrac{1}{2\times2}< \dfrac{1}{1\times2}\\ \dfrac{1}{3^2}=\dfrac{1}{3\times3}< \dfrac{1}{2\times3}\\ \dfrac{1}{4^2}=\dfrac{1}{4\times4}< \dfrac{1}{3\times4}\\ ...\\ \dfrac{1}{100^2}=\dfrac{1}{100\times100}< \dfrac{1}{99\times100}\)

\(\Rightarrow\)\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{99\times100}\)

hay \(A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{100}\)

\(\Rightarrow A< \dfrac{100}{100}-\dfrac{1}{100}\)

\(\Rightarrow A< \dfrac{99}{100}\)

\(\dfrac{99}{100}< 1\)

\(\Rightarrow A< 1\)

Vậy \(A< 1\)(đpcm)

23 tháng 3 2017

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

...............

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}< 1\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1\)

Vậy A<1

a: \(=\left(\dfrac{5}{15}-\dfrac{12}{9}\right)+\left(\dfrac{14}{15}+\dfrac{11}{25}\right)+\dfrac{2}{7}\)

\(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{70+33}{75}+\dfrac{2}{7}\)

\(=-1+\dfrac{2}{7}+\dfrac{103}{75}=\dfrac{-5}{7}+\dfrac{103}{75}=\dfrac{346}{525}\)

b: \(4\cdot\left(-\dfrac{1}{2}\right)^3+\dfrac{1}{2}\)

\(=4\cdot\dfrac{-1}{8}+\dfrac{1}{2}=\dfrac{-1}{2}+\dfrac{1}{2}=0\)

c: \(\dfrac{10^3+5\cdot10^2+5^3}{6^3+3\cdot6^2+3^3}=\dfrac{5^3\cdot8+5\cdot5^2\cdot2^2+5^3}{3^3\cdot2^3+3\cdot2^2\cdot3^2+3^3}\)

\(=\dfrac{5^3\left(8+4+1\right)}{3^3\left(8+4+1\right)}=\dfrac{125}{27}\)

e: \(\dfrac{2^8\cdot9^2}{6^4\cdot8^2}=\dfrac{2^8\cdot3^4}{3^4\cdot2^4\cdot2^6}=\dfrac{1}{4}\)