Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a}{b}< 1\\ \Rightarrow a< b\\ \Rightarrow am< bm\left(m\in N^{\cdot}\right)\\ \Rightarrow am+ab< bm+ab\\\Rightarrow a\left(b+m\right)< b\left(a+m\right)\\ \Rightarrow\frac{a}{b} < \frac{a+m}{b+m}\)
= 2 x [1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +1/7 -1/9 + .., +1/99 - 1/101
= 2 x [ 1 - 1/101 ]
= 2 x 100/101
= 200/101
t cho mik nha
\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+.........+\(\frac{2}{99.101}\)
=\(\frac{1}{1}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+....+\(\frac{1}{99}\)-\(\frac{1}{101}\)
= 1 - \(\frac{1}{101}\)= \(\frac{100}{101}\)
Gọi d là ƯCLN của (n;n+1)
\(\Rightarrow\)n chia hết cho d; (n+1) chia hết cho d
\(\Rightarrow\)(n+1) - n chia hết cho d
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow d\in\){1;-1}
Vậy \(\frac{n}{n+1}\)là phân số tối giản
gọi d là ƯCLN{n;n+1}
ta có: n chia hết ; n+1 chia hết cho d (1)
=> n+1-n chia hết cho d
=> 1 chia hết cho d (2)
từ (1) và(2)=> d= +1 và -1
vậy \(\frac{n}{n+1}\)là phân số tối giản
Ta có :
1/n - 1/n + k
= n + k - n / n . ( n + k )
= k / n . ( n + k )
Ta có \(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\cdot\left(n+k\right)}-\frac{n}{n\cdot\left(n+k\right)}=\frac{k}{n\cdot\left(n+k\right)}\) (dpcm)
Ta có :
\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n.\left(n+k\right)}-\frac{n}{n.\left(n+k\right)}=\frac{n+k-n}{n.\left(n+k\right)}=\frac{k}{n.\left(n+k\right)}\)
Vậy \(\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n.\left(n+k\right)}\)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)
Không. Vì không có phân số nào mà cả tử số và mẫu số nhân với hai số khác nhau lại bằng phân số đã cho cả (hay do m khác n)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{n+k-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)
=> điều phải chứng minh
\(\frac{k}{n\left(n+k\right)}=\frac{1}{n+k}\)
Vì n(n+k) chia hết cho cả n và n + k nên ta lấy n(n+k) là mẫu chung
\(\frac{1}{n}=\frac{1.\left(n+k\right)}{n.\left(n+k\right)}=\frac{n+k}{n\left(n+k\right)}\) ; \(\frac{1}{n+k}=\frac{1.n}{n\left(n+k\right)}=\frac{n}{n\left(n+k\right)}\) (nhân cả tử phân số này cho phân số kia)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k+n-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)
Gọi d là ƯC(n;n+1)
Khi đó: n chia hết co d n+1 chia hết cho d
=> (n+1)-n chia hết cho d
=> 1 chia hết cho d
=> d=1
Vậy n/n+1 là phân số tối giản
\(\frac{1}{n}-\frac{1}{n-k}=\frac{n+k}{n.\left(n+k\right)}-\frac{n}{n.\left(n+k\right)}\)
\(=\frac{n+k-n}{n.\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)
Học tốt