K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

\(\frac{1}{1-\frac{2}{1-\frac{3}{1-\frac{1}{4}}}}=\frac{1}{1-\frac{2}{1-\frac{3}{\frac{3}{4}}}}=\frac{1}{1-\frac{2}{1-4}}=\frac{1}{1-\frac{2}{-3}}=\frac{1}{\frac{5}{3}}=\frac{3}{5}\Rightarrow A=1-\frac{3}{5}=\frac{2}{5}\)

Bài làm

\(A=1-\frac{1}{1-\frac{2}{1-\frac{3}{1-\frac{1}{4}}}}\)

\(A=1-\frac{1}{1-\frac{2}{1-\frac{3}{\frac{4}{4}-\frac{1}{4}}}}\)

\(A=1-\frac{1}{1-\frac{2}{1-\frac{3}{\frac{3}{4}}}}\)

\(A=1-\frac{1}{1-\frac{2}{1-3:\frac{3}{4}}}\)

\(A=1-\frac{1}{1-\frac{2}{1-4}}\)

\(A=1-\frac{1}{1-\frac{2}{-3}}\)

\(A=1-\frac{1}{1+\frac{2}{3}}\)

\(A=1-\frac{1}{\frac{3}{3}+\frac{2}{3}}\)

\(A=1-\frac{1}{\frac{5}{3}}\)

\(A=1-1:\frac{5}{3}\)

\(A=1-\frac{3}{5}\)

\(A=\frac{5}{5}-\frac{3}{5}\)

\(A=\frac{2}{5}\)

Vậy \(A=\frac{2}{5}\)

# Học tốt #

17 tháng 9 2016

 A=5-3(2x+1)^2

Ta có : (2x+1)^2\(\ge\)0

\(\Rightarrow\)-3(2x-1)^2\(\le\)0

\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5

Dấu = xảy ra khi : (2x-1)^2=0

=> 2x-1=0 =>x=\(\frac{1}{2}\)

Vậy : A=5 tại x=\(\frac{1}{2}\)

Ta có : (x-1)^2 \(\ge\)0

=> 2(x-1)^2\(\ge\)0

=>2(x-1)^2+3 \(\ge\)3

=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)

Dấu = xảy ra khi : (x-1)^2 =0

=> x = 1

Vậy : B = \(\frac{1}{3}\)khi x = 1

\(\frac{x^2+8}{x^2+2}\)\(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Làm như câu B                   GTNN = 4 khi x =0 

k vs nha

22 tháng 7 2016

BẠN ƠI MÌNH CHỈ GIẢI VÀI CÂU THÔI NHA:

7) 2x = 3y = 5z và x - y + z = -33

  Ta có: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) và x - y + z = -33

Theo tính chất của dãy tỉ số = nhau, ta có:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)

Do đó:

\(\frac{x}{15}=-3\Rightarrow x=-45\)

\(\frac{y}{10}=-3\Rightarrow y=-30\)

\(\frac{z}{6}=-3\Rightarrow z=-18\)

vậy x=-45    y=-30     z=-18 

22 tháng 7 2016

8) 5x = 8y = 20z và x-y-z =3

ta có: \(\frac{x}{160}=\frac{y}{100}=\frac{z}{40}\) và x-y-z = 3

Theo t/c của dãy tỉ số = nhau, có:

\(\frac{x}{160}=\frac{y}{100}=\frac{z}{40}=\frac{x-y-z}{160-100-40}=\frac{3}{20}=0,15\)

Do đó:

\(\frac{x}{160}=3\Rightarrow x=24\) 

\(\frac{y}{100}=3\Rightarrow y=15\)

\(\frac{z}{40}=3\Rightarrow z=6\)

vậy x= 24     y=15     z=6

24 tháng 1 2018

Bài 1: \(\left|2x+3\right|-\left|8-2x\right|=5\)

Với \(x< -\frac{3}{2}\), ta có: \(-2x-3-\left(8-2x\right)=5\Leftrightarrow-11=5\left(l\right)\)

Với \(-\frac{3}{2}\le x\le4\), ta có: \(2x+3-8+2x=5\Leftrightarrow4x=10\Leftrightarrow x=2,5\left(tm\right)\)

Với \(x>4\), ta có \(2x+3-2x+8=5\Leftrightarrow11=5\left(l\right)\)

Vậy x = 2,5.

Bài 2:  Em tham khảo tại đây:

Câu hỏi của Nguyễn Khánh Ly - Toán lớp 7 - Học toán với OnlineMath

24 tháng 12 2017

CTV là cộng tác viên nhé bạn!

1 tháng 8 2019

1.
a) \(\frac{11}{2}-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3\)
               \(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3-\frac{11}{2}\)
               \(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=-\frac{5}{2}\)
                          \(\left|2x+-\frac{3}{2}\right|=-\frac{2}{3}:\left(-\frac{5}{2}\right)\)
                          \(\left|2x+-\frac{3}{2}\right|=\frac{4}{15}\)
\(\Rightarrow\left|2x+-\frac{3}{2}\right|\in\text{{}\frac{4}{15};-\frac{4}{15}\)}
Nếu, \(2x+\left(-\frac{3}{2}\right)=\frac{4}{15}\)
                               \(2x=\frac{53}{30}\)
                                  \(x=\frac{53}{60}\)
Nếu, \(2x+\left(-\frac{3}{2}\right)=-\frac{4}{15}\)
                               \(2x=\frac{37}{30}\)
                                  \(x=\frac{37}{60}\)
Vậy \(x\in\text{{}\frac{53}{60};\frac{37}{60}\)}
b) \(\left|\frac{2}{7}x-\frac{1}{5}\right|-\left|-x+\frac{4}{9}\right|=0\)
    \(\left|\frac{2}{7}x-\frac{1}{5}\right|=\left|-x+\frac{4}{9}\right|\)
\(\Rightarrow\left|\frac{2}{7}x-\frac{1}{5}\right|\in\text{{}-x+\frac{4}{9};-\left(x+\frac{4}{9}\right)\)}
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-x+\frac{4}{9}\)
                          \(x=\frac{203}{405}\)
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-\left(-x+\frac{4}{9}\right)\)
         \(\frac{2}{7}x-\frac{1}{5}=x-\frac{4}{9}\)
            \(\frac{2}{7}x-x=\frac{1}{5}-\frac{4}{9}\)
                 \(-\frac{5}{7}x=-\frac{11}{45}\)
                           \(x=\frac{77}{225}\)
Vậy \(x\in\text{{}\frac{203}{405};\frac{77}{225}\)}

2 tháng 2 2020

Ta có : \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...+\left|x+\frac{1}{110}\right|\ge0\forall x\)

=> 11x \(\ge\)0

=> x  \(\ge\)

Khi đó \(\orbr{\begin{cases}x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=11x\left(10\text{ số hạng x }\right)\\x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=-11x\left(10\text{ số hạng x}\right)\end{cases}}\)

=> \(\orbr{\begin{cases}10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=11x\\10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=-11x\end{cases}}\)

=> \(\orbr{\begin{cases}10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=11x\\10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=-11x\end{cases}}\)

=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=-11x\end{cases}}\)

=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{11}\right)=-11x\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{10}{11}\\21x=-\frac{10}{11}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{10}{11}\left(\text{tm}\right)\\x=-\frac{10}{231}\left(\text{loại}\right)\end{cases}}}\)

Vậy \(x=\frac{10}{11}\)