\(\frac{120^3}{40^3}\)

\(\frac{390^4}{130^4}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

1. sai dấu nhé 

2.a, \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(5^2.3\right)^{15}}=\frac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)

b, \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(\frac{4}{5}\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\cdot2\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\right)^5\cdot2^5}{\left(\frac{2}{5}\right)^5\cdot\frac{2}{5}}=2^5\div\frac{2}{5}=32\cdot\frac{5}{2}=80\)

c, \(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{2^{15}}=3^2=9\)

23 tháng 9 2016

\(\frac{120^3}{40^3}\)= (120:40)3 = 33 = 27

\(\frac{390^4}{130^4}\)=(390 : 130)4=34 = 81

\(\frac{3^2}{\left(0,375\right)^2}\)= (3:0,375)2 = 82 =64

23 tháng 9 2016

ai giúp mk với

mai phải nộp bài rùiHỏi đáp ToánHỏi đáp Toán

a)\(\frac{20^3}{40^3}=\frac{1^3}{2^3}=\frac{1}{8}\)
b) \(\frac{390^4}{130^4}=\frac{3^4}{1^4}=\frac{81}{1}=81\)
c) \(\frac{3^2}{0,375^2}=\frac{8^2}{1^2}=\frac{64}{1}=64\)
 

6 tháng 8 2017

Giải:

a) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{40}\right)^3=30^3=2700\)

b) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=30^4=810000\)

c) \(\dfrac{3^2}{\left(0,375\right)^2}=\left(\dfrac{3}{0,375}\right)^2=8^2=64\)

Đáp số: a) 2700; b) 810000; c) 64.

Chúc bạn học tốt!!!

13 tháng 8 2017

a) $\dfrac{120^3}{40^3}=(\dfrac{120}{40})^3=3^3=27$

b) $\dfrac{390^4}{130^4}=(\dfrac{390}{130})^4=3^4=81$

c) $\dfrac{3^2}{(0,375)^2}=(3:0,375)^2=(3:\dfrac{3}{8})^2=8^2=64$

25 tháng 7 2016

a) \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{47}\right)^6=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^{21-12}=\left(\frac{3}{7}\right)^9\)

b) \(\frac{390}{130}^4=3^4=81\)

c) \(\left(0,125\right)^3.512=\frac{1}{512}.512=1\)

14 tháng 8 2017

image /assets/images/2017/08_10/1195-xHOKk8NXdv5EDVJo.jpeg

14 tháng 8 2017

a) \(\left(\dfrac{1}{5}\right)^5.5^5=\left(\dfrac{1}{5}.5\right)^5=1^5=1\)

b) \(\left(0,125\right)^3.512=\left(0,512\right)^3.8^3=\left(0,512.8\right)^3=1^3=1\)

c) \(\left(0,25\right)^4.1024=\left[\left(0,25\right)^2\right]^2.32^2=\left(\dfrac{1}{6}\right)^2.32^2=\left(\dfrac{1}{6}.32\right)^2=2^2=4\)

d) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{40}\right)^3=3^3=64\)

e) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=3^4=81\)

g) \(\dfrac{3^2}{\left(0,375\right)^2}=\left(\dfrac{3}{0,375}\right)^3=8^3=512\)

4 tháng 7 2017

a,\(\dfrac{120^3}{40^3}=3\)

b,\(\dfrac{390^3}{130^3}=3\)

c,\(\dfrac{3^2}{\left(0,375\right)^2}=8\)

8 tháng 7 2017

bn trình bày lời giải ra chứ

bài 1: Tính :1)\(\left(-\frac{3}{4}\right)^0\)                            2)\(\left(-2\frac{1}{3}\right)^4\)                                   3)\(\left(2,5\right)^3\) 4)\(25^3:5^2\)                       5)\(2^2.4^3\)                         6)\(\left(\frac{1}{5}\right)^5.5^3\)             7)\(\left(\frac{1}{5}\right)^3.10^3\)          8) \(\left(-\frac{2}{3}\right)^4:2^4\)             ...
Đọc tiếp

bài 1: Tính :

1)\(\left(-\frac{3}{4}\right)^0\)                            2)\(\left(-2\frac{1}{3}\right)^4\)                                   3)\(\left(2,5\right)^3\) 

4)\(25^3:5^2\)                       5)\(2^2.4^3\)                         6)\(\left(\frac{1}{5}\right)^5.5^3\)             

7)\(\left(\frac{1}{5}\right)^3.10^3\)          8) \(\left(-\frac{2}{3}\right)^4:2^4\)               9)\(\left(\frac{2}{3}\right)^4.9^2\)        10)\(\left(\frac{1}{2}\right)^3.\left(\frac{1}{4}\right)^2\)       11)\(\left(\frac{120}{40}\right)^3\)                 12)\(\frac{390^4}{130^4}\)

bài 2: Thực hiện phép tính :

1)\(3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)

2)\(\left(-2\right)^3+2^2+\left(-1\right)^{20}+\left(-2\right)^0\)

3)\(\left(3^2\right)^2-\left(\left(-5\right)^2\right)^2+\left(\left(-2\right)^3\right)^2\)

bài 3: tìm x biết :

a)\(\left(x-1\right)^3=27\)

b)\(x^2+x=0\)

c)\(\left(2x+1\right)^2=25\)

d)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

bài 4: tính giá trị của:

\(M=100^2-99^2+98^2-97^2+....+2^2-1^2\)

mấy bài này là lũy thừa của số hữu tỉ nha

 

2
30 tháng 7 2019

\(1,a,\left(-\frac{3}{4}\right)^0=1\)

\(b,\left(-2\frac{1}{3}\right)^4=\left[-\left(\frac{2\cdot3+1}{3}\right)\right]^4=\left(\frac{-7}{3}\right)^4=\frac{2401}{256}\)

\(c,\left(2,5\right)^3=15,625\)

\(d,25^3:5^2=5^6:5^2=5^4=625\)

\(e,2^2\cdot4^3=2^2\cdot2^6=2^8=256\)

\(f,\left(\frac{1}{5}\right)^5\cdot5^3=\left(\frac{1}{5}\right)^5:\frac{1}{5^3}=\left(\frac{1}{5}\right)^5:\left(\frac{1}{5}\right)^3=\left(\frac{1}{5}\right)^2=\frac{1}{25}\)

\(g,\left(\frac{1}{5}\right)^3\cdot10^3=\left(\frac{1}{5}\cdot10\right)^3=2^3=8\)

\(h,\left(-\frac{2}{3}\right)^4:2^4=\left(-\frac{2}{3}:2\right)^4=\left(-\frac{1}{3}\right)^4=\frac{1}{81}\)

\(i,\left(\frac{2}{3}\right)^4:9^2=\left(\frac{2}{3}\right)^4:3^4=\left(\frac{2}{3}:3\right)^4=\left(\frac{2}{9}\right)^4=\frac{16}{6561}\)

\(k,\left(\frac{1}{2}\right)^3.\left(\frac{1}{4}^2\right)=\left(\frac{1}{2}\right)^3.\left(\frac{1}{2}\right)^4=\left(\frac{1}{2}\right)^7=\frac{1}{128}\)

\(m,\left(\frac{120}{40}\right)^3=3^3=27\)

\(n,\frac{390^4}{130^4}=\left(\frac{390}{130}\right)^4=3^4=81\)

30 tháng 7 2019

\(2,a,3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)

\(=3-1+\frac{1}{4}\cdot\frac{1}{2}\)

\(=2+\frac{1}{8}\)

\(=\frac{17}{8}\)

\(b,\left(-2\right)^3+2^2+\left(-1\right)^{20}+\left(-2\right)^0\)

\(=-8+4+1+1\)

\(=-2\)

\(c,\left(3^2\right)^2-\left(\left(-5\right)^2\right)^2+\left(\left(-2\right)^3\right)^2\)

\(=3^4-\left(-5\right)^4+\left(-2\right)^6\)

\(=81-625+64\)

\(=-480\)

\(3,a,\left(x-1\right)^3=27\)

\(\Rightarrow x-1=3\)

\(\Rightarrow x=4\)

\(b,x^2+x=0\)

\(\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\Rightarrow x=-1\end{cases}}\)

\(c,\left(2x+1\right)^2=25\)

\(\Rightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x=4\\2x=-6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2=1\Rightarrow x-1=\pm1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2\text{ or }x=0\end{cases}}\)

\(4,M=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(M=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(M=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(M=100+99+98+97+...+2+1\)

\(M=\left(100+1\right)\cdot100:2\)

\(M=101\cdot50=5050\)