Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=2021\Leftrightarrow x+1=2022\\ \Leftrightarrow P=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x\\ P=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x\\ P=0\)
\(P=x^5-2022x^4+2022x^3-2022x^2+2022x-2021=x^4\left(x-2021\right)-x^3\left(x-2021\right)+x^2\left(x-2021\right)-x\left(x-2021\right)+\left(x-2021\right)\)
\(=\left(x-2021\right)\left(x^4-x^3+x^2-x+1\right)\)
\(=\left(2021-2021\right)\left(x^4-x^3+x^2-x+1\right)=0\)
\(PT\Leftrightarrow2022x^2+2022x-2021x-2021=0\)
\(\Leftrightarrow2022x\left(x+1\right)-2021\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2022x-2021\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2022x-2021=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{2021}{2022}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{2021}{2022}\right\}\)
\(a,\Rightarrow x^2+4x+4+x^2-2x+1+x^2-9-3x^2=-8\\ \Rightarrow2x=-4\Rightarrow x=-2\\ b,\Rightarrow\left(x-2021\right)\left(2022x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2021\\x=\dfrac{1}{2022}\end{matrix}\right.\\ c,\Rightarrow\left(x^2-9\right)-\left(x-3\right)\left(2x+7\right)=0\\ \Rightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(2x+7\right)=0\\ \Rightarrow\left(x-3\right)\left(x+3-2x-7\right)=0\\ \Rightarrow\left(x-3\right)\left(-4-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Thay `x=2021` vào A: `A=2020.2021-2022 .2021^2 +2021^3=-2021`
\(a,Sửa:2021x-1+2022x\left(1-2021x\right)=0\\ \Leftrightarrow\left(2021x-1\right)\left(1-2022x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2021}\\x=\dfrac{1}{2022}\end{matrix}\right.\)
\(x^2-2xy+y^2-2022x+2022y\\ =\left(x^2-2xy+y^2\right)-\left(2022x-2022y\right)\\ =\left(x-y\right)^2-2022\left(x-y\right)\\ =\left(x-y\right)\left(x-y-2022\right)\)
\(x^2-xy-2022x+2023y-2024=0\\\Leftrightarrow (x^2-2023x)-(xy-2023y)+(x-2023)-1=0\\\Leftrightarrow x(x-2023)-y(x-2023)+(x-2023)=1\\\Leftrightarrow(x-2023)(x-y+1)=1\)
Vì \(x,y\) nguyên nên \(x-2023;x-y+1\) có giá trị nguyên
mà \(\left(x-2023\right)\left(x-y+1\right)=1\)
nên ta có các trường hợp xảy ra là:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2023=1\\x-y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2023=-1\\x-y+1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=2024\left(tm\right)\\\left\{{}\begin{matrix}x=2022\\y=2024\end{matrix}\right.\left(tm\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2024;2024\right);\left(2022;2024\right)\).
\(\text{#}Toru\)
Khi x = 2021
=> 2022 = x + 1
Khi đó E = x10 - 2022x9 + 2022x8 - ... + 2022x2 - 2022x + 2022
= x10 - (x + 1)x9 + (x + 1)x8 - .... + (x + 1)x2 - (x + 1)x + (x + 1)
= x10 - x10 - x9 + x9 + x8 - ... + x3 + x2 - x2 - x + x + 1
= 1