Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\sin^215+\sin^275-\dfrac{2\cos49}{\sin41}+\tan26.\tan64\)
\(=\sin^215+\cos^215-\dfrac{2\cos49}{\cos49}+1\)
\(=1-2+1=0\)
Học tốt !!
a: \(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\)
\(\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)(đúng)
b: Ta có: \(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}\)
\(=\dfrac{4\cdot\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)
=4
\(C=\dfrac{x-\dfrac{1}{x^2}}{1+\dfrac{1}{x}+\dfrac{1}{x^2}}\)
Đk: \(x\ne0\)
\(\Rightarrow C=\dfrac{\dfrac{x^3-1}{x^2}}{\dfrac{x^2+x+1}{x^2}}=\dfrac{x^3-1}{x^2+x+1}\)
\(=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=x-1\)
\(=\dfrac{\dfrac{x^3-1}{x^2}}{\dfrac{x^2+x+1}{x^2}}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=x-1\)
Sửa đề \("="\rightarrow"+"\)
Áp dụng BĐT cauchy, ta có:\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Leftrightarrow\sum\dfrac{1}{a^2+2b^2+3}\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\right)\\ \Leftrightarrow\sum\dfrac{1}{a^2+2b^2+3}\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{ab^2c+abc+ab}+\dfrac{b}{abc+ab+b}\right)=\dfrac{1}{2}\cdot1=\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow a=b=c=1\)
A = -1