K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1

\(log_{\sqrt{2}}\sqrt{2}=1;log_77=1\)

\(log_{10}1=0;log_91=0\)

\(3^{log_35}=5;7^{log_7\sqrt{2}}=\sqrt{2}\)

\(log_88^{-10}=-10;log_55^{\sqrt{3}}=\sqrt{3}\)

NV
12 tháng 1

\(log_5125=log_55^3=3\)

\(log_6216=log_66^3=3\)

\(log_{10}\dfrac{1}{10000}=log_{10}10^{-4}=-4\)

\(log\sqrt{1000}=log_{10}10^{\dfrac{3}{2}}=\dfrac{3}{2}\)

\(81^{log_35}=3^{3log_35}=3^{log_3125}=125\)

\(125^{log_52}=5^{3log_52}=5^{log_58}=8\)

\(\left(\dfrac{1}{49}\right)^{log_7\dfrac{1}{8}}=7^{-2log_7\dfrac{1}{8}}=7^{log_764}=64\)

\(\left(\dfrac{1}{625}\right)^{log_52}=5^{-4log_52}=5^{log_5\dfrac{1}{16}}=\dfrac{1}{16}\)

\(\left[log_24x\right]^2-log_{\sqrt{2}}2x=5\)

=>\(\left[log_2\left(2\cdot2x\right)\right]^2-log_{2^{\dfrac{1}{2}}}2x=5\)

=>\(\left[1+log_22x\right]^2-1:\dfrac{1}{2}\cdot log_22x=5\)

=>\(\left(log_22x\right)^2+2\cdot log_22x+1-2\cdot log_22x=5\)

=>\(\left(log_22x\right)^2=4\)

=>\(\left[{}\begin{matrix}log_22x=2\\log_22x=-2\left(loại\right)\end{matrix}\right.\Leftrightarrow log_22x=2\)

=>\(2x=2^2=4\)

=>x=2

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có:

\(\begin{array}{l}10 + \left( { - 12} \right) =  - 2\\ - 2 + \left( { - 12} \right) =  - 14\\ - 14 + \left( { - 12} \right) =  - 26\\ - 26 + \left( { - 12} \right) =  - 38\end{array}\)

Dãy số là cấp số cộng

b)    Ta có:

\(\begin{array}{l}\frac{1}{2} + \frac{3}{4} = \frac{5}{4}\\\frac{5}{4} + \frac{3}{4} = 2\\2 + \frac{3}{4} = \frac{{11}}{4}\\\frac{{11}}{4} + \frac{3}{4} = \frac{7}{2}\end{array}\)

 Dãy số là cấp số cộng

c)    Không xác định được d giữa các số hạng

 Dãy số không là cấp số cộng

d)    Ta có:

 \(\begin{array}{l}1 + 3 = 4\\4 + 3 = 7\\7 + 3 = 10\\10 + 3 = 13\end{array}\)

Dãy số là cấp số cộng

NV
12 tháng 1

\(log_{a^4}b^4.log_ba^5=\dfrac{1}{4}.4.log_ab.5.log_ba=5.log_ab.log_ba=5\)

\(log_{a^3}b^2.log_ba^4=\dfrac{1}{3}.2.log_ab.4.log_ba=\dfrac{8}{3}.log_ab.log_ba=\dfrac{8}{3}\)

\(log_{a^{15}}b^7.log_{b^{49}}a^{30}=\dfrac{1}{15}.7.log_ab.\dfrac{1}{49}.30.log_ba=\dfrac{2}{7}log_ab.log_ba=\dfrac{2}{7}\)

\(log_{a^{2021}}b^{2020}.log_{b^{4040}}a^{6063}=\dfrac{1}{2021}.2020.log_ab.\dfrac{1}{4040}.6063.log_ba=\dfrac{3}{2}\)

NV
12 tháng 1

\(log_{a^3}b.log_ba=\dfrac{1}{3}.log_ab.log_ba=\dfrac{1}{3}\)

\(log_{a^{10}}b^5.log_{b^3}a^9=\dfrac{1}{10}.5.log_ab.\dfrac{1}{3}.9.log_ba=\dfrac{3}{2}\)

\(log_{a^{107}}b^{101}.log_{b^{303}}a^{428}=\dfrac{1}{107}.101.log_ab.\dfrac{1}{303}.428.log_ba=\dfrac{4}{3}.log_ab.log_ba=\dfrac{4}{3}\)

a: \(log_{a^3}b\cdot log_ba=\dfrac{1}{3}\cdot log_ab\cdot log_ba=\dfrac{1}{3}\)

b: \(log_{a^{10}}b^5\cdot log_{b^3}a^9\)

\(=\dfrac{1}{10}\cdot log_ab^5\cdot\dfrac{1}{3}\cdot log_ba^9\)

\(=\dfrac{1}{30}\cdot5\cdot log_ab\cdot9\cdot log_ba=\dfrac{45}{30}=\dfrac{3}{2}\)

c: \(log_{a^{107}}b^{101}\cdot log_{b^{303}}a^{428}\)

\(=\dfrac{1}{107}\cdot log_ab^{101}\cdot\dfrac{1}{303}\cdot log_ba^{428}\)

\(=\dfrac{1}{107}\cdot101\cdot log_ab\cdot\dfrac{1}{303}\cdot428\cdot log_ba\)

\(=4\cdot\dfrac{1}{3}=\dfrac{4}{3}\)

24 tháng 11 2023

\(\lim\limits_{n\rightarrow+\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^3+n^2+n+1-n^3}{\sqrt[3]{\left(n^3+n^2+n+1\right)^2}+n\cdot\sqrt[3]{n^3+n^2+n+1}+n}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2+n+1}{\sqrt[3]{\left[n^3\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)\right]^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2+n+1}{n^2\cdot\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2}+n^2\cdot\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+n^2}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt[3]{\left(1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}\right)^2+\sqrt[3]{1+\dfrac{1}{n}+\dfrac{1}{n^2}+\dfrac{1}{n^3}}+1}}\)

\(=\dfrac{1}{1+1+1}=\dfrac{1}{3}\)

b: \(\lim\limits_{n\rightarrow+\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{n^2+n-n^2+n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{2n-1}{\sqrt{n^2+n}+\sqrt{n^2-n+1}}\)

\(=\lim\limits_{n\rightarrow+\infty}\dfrac{2-\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1-\dfrac{1}{n}+\dfrac{1}{n^2}}}=\dfrac{2}{\sqrt{1}+\sqrt{1}}=1\)