Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=29\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=133\)
\(a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=641\)
\(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-\left(ab\right)^2\left(a+b\right)=3157\)
\(a-b=\pm\sqrt{\left(a-b\right)^2}=\pm\sqrt{\left(a+b\right)^2-4ab}=\pm3\)
a, `A = a^2 + b^2 = (a + b)^2 - 2ab`
Thay `a + b = 7 ; ab = 10` vào A ta được:
`A = 7^2 - 2 . 10 = 29`
Vậy `A = 29` tại `a + b = 7 ; ab = 10`
b, `B = a^3 + b^3 = (a + b)^3 - 3ab (a + b)`
Thay `a + b = 7 ; ab = 10` vào B ta được:
`B = 7^3 - 3 . 10 . 7 = 133`
Vậy `B = 133` tại `a + b = 7 ; ab = 10`
c, Ta có: `a^2 + b^2 = 29` (chứng minh câu a)
`=> (a^2 + b^2)^2 = 29^2`
`=> a^4 + 2a^2b^2 + b^4 = 841`
Thay `ab = 10` vào biểu thức trên ta được:
`a^4 + 2 . 10^2 + b^4 = 841`
`=> a^4 + b^4 = 841 - 2 . 10^2 = 641`
hay `C = 641`
d, Ta có: `(a^3 + b^3) (a^2 + b^2) `
`= a^5 + a^3b^2 + a^2b^3 + b^5`
`= a^5 + b^5 + a^2b^2 (a + b)`
hay `133 . 29 = a^5 + b^5 + 10^2 . 7`
`=> a^5 + b^5 = 3157`
hay `D = 3157`
e, Ta có: \(E=a-b=\pm\sqrt{\left(a-b\right)^2}=\pm\sqrt{\left(a+b\right)^2-4ab}\)
Thay `a + b = 7` và `ab = 10` vào biểu thức trên ta được:
\(E=\pm\sqrt{7^2-4.10}=\pm3\)
d) => 2a^2 + 2b^2 + 2c^2 = 2ab+ 2bc + 2ca
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0
( a^2 - 2ab+b^2 ) + ( a^2 - 2ac + c^2) + ( b^2 - 2bc - c^2) = 0
(a-b)^2 + (a-c)^2 + (b-c)^2 = 0
=> | ( a-b)^2 = 0 => a=b
| ( a-c)^2 = 0 => a=c
| ( b-c)^2 = 0 => b=c
=>>> a=b=c
Lời giải:
$(a-b)^2=a^2-2ab+b^2=(a^2+2ab+b^2)-4ab=(a+b)^2-4ab=49-4.10=9$
$\Rightarrow a-b=3$ (do $a>b$)
Ta có:\(\left(a+b\right)^2=4\Rightarrow a^2+2ab+b^2=4\Rightarrow a^2+b^2=4-2.\left(-35\right)=4+70=74\)
Lại có:P\(=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=2.\left(74+35\right)=2.109=218\)
Vậy........................
a) Xét tam giác \(OPH\) tam giác \(PEH\) ta có:
\(\widehat {HOP} = \widehat {HPE}\) (giả thuyết)
\(\widehat {OPH} = \widehat {PEH}\) (giả thuyết)
Do đó, \(\Delta OPH\backsim\Delta PEH\) (g.g)
Suy ra, \(\frac{{PH}}{{EH}} = \frac{{OH}}{{PH}} \Rightarrow P{H^2} = OH.EH = 4.6 \Rightarrow P{H^2} = 24 \Leftrightarrow PH = \sqrt {24} = 2\sqrt 6 \).
Vậy \(PH = 2\sqrt 6 \).
b) Xét tam giác \(AME\) tam giác \(AFM\) ta có:
\(\widehat {AME} = \widehat {AFM}\) (giả thuyết)
\(\widehat A\) chung
Do đó, \(\Delta AME\backsim\Delta AFM\) (g.g)
Suy ra, \(\frac{{AM}}{{AF}} = \frac{{AE}}{{AM}} \Rightarrow A{M^2} = AF.AE\) (điều phải chứng minh).
Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+zxa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0
a) (a - b)^2 biết a + b =10 và a . b =21
(a - b)^2=a2-2ab+b2=a2+2ab+b2-4ab
=(a+b)2-4ab (1)
thay a + b =10 và a . b =21 vào (1) ta được :
102-4.21
=100-84
=16
vậy (a - b)^2=16 biết a + b =10 và a . b =21
b) (a + b)^2 biết a - b =2 và a . b =-35
(a+b)2=a2+2ab+b2=a2-2ab+b2+4ab
=(a-b)2+4ab (2)
thay a - b =2 và a . b =-35 vào (2) ta được :
22+4.(-35)
=4-140
=-136
vậy (a + b)^2=-136 biết a - b =2 và a . b =-35