Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(M=\frac{2014^2+1^2}{2014.1}+\frac{2013^2+2^2}{2013.2}+\frac{2012^2+3^2}{2012.3}+...+\frac{1008^2+1007^2}{1008.1007}\)
\(=\frac{2014}{1}+\frac{1}{2014}+\frac{2013}{2}+\frac{2}{2013}+\frac{2012}{3}+\frac{3}{2013}+...+\frac{1008}{1007}+\frac{1007}{1008}\)
\(=\frac{2014}{1}+\frac{2013}{2}+...+\frac{1}{2014}\)
\(=1+\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+...+\left(\frac{1}{2014}+1\right)\)
\(=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+\frac{2015}{2015}\)
\(=2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)\)
\(\Rightarrow\frac{M}{N}=\frac{2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}=2015\)
Số số hạng của S là: (2017 -1): 2 + 1 = 1009
S = (2017 +1).1009: 2 =1018081
Đáp án cần chọn là B
So sánh
M = \(\dfrac{2017^{2015}+1}{2017^{2015}-1}\) và N = \(\dfrac{2017^{2015}-5}{2017^{2015}-3}\)
Ta có:
M=\(\dfrac{2017^{2015}+1}{2017^{2015}-1}=\dfrac{2017^{2015}-1+2}{2017^{2015}-1}=1+\dfrac{2}{2017^{2015}-1}>1\left(1\right)\)
N=\(\dfrac{2017^{2015}-5}{2017^{2015}-3}=\dfrac{2017^{2015}-3-2}{2017^{2015}-3}=1-\dfrac{2}{2017^{2015}-3}< 1\left(2\right)\)
Từ (1) và (2) suy ra M>1>N
Vậy M>N.
Ta có :
\(\dfrac{2017^{2015}+1}{2017^{2015}-1}>\dfrac{2017^{2015}}{2017^{2015}}>\dfrac{2017^{2015}-5}{2017^{2015}-3}\)
Tick mình nha bạn hiền.