K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

viết ..... thế thì ai mà biết

17 tháng 7

12.A= 1.5.12+5.9(13-1)+9.13(17-5)+13.17(21-9)+.....+97.101(105 - 93)

12.A = 1.5.12 + 5.9.13 -1.5.9 + 9.13.17- 5.9.13 +.....+ 97.101.105 -93.97.101

12.A = 1.5.12 -1.5.9 + 97.101.105

A =  (1.5.12 -1.5.9 + 97.101.105):12 = 85725

21 tháng 3 2020

Đặt \(B=\frac{2}{5\cdot9}+\frac{2}{9\cdot13}+\frac{2}{13\cdot17}+....+\frac{2}{97\cdot101}\)

\(\Rightarrow2B=\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+....+\frac{4}{97\cdot101}\)

\(\Leftrightarrow2B=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+....+\frac{1}{97}-\frac{1}{101}\)

\(\Leftrightarrow2B=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}\)

\(\Leftrightarrow B=\frac{96}{505}:2\)

10 tháng 5 2017

\(A=8400\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)

\(=\frac{8400}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}+\frac{4}{21.25}\right)\)

\(=2100\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)

\(=2100\left(1-\frac{1}{25}\right)\)

\(=2100\cdot\frac{24}{25}\)

\(=2016\)

10 tháng 5 2017

\(A=8400.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)

\(A=8400.\left(\frac{1.4}{1.5.4}+\frac{1.4}{5.9.4}+\frac{1.4}{9.13.4}+\frac{1.4}{13.17.4}+\frac{1.4}{17.21.4}+\frac{1.4}{21.25.4}\right)\)

\(A=8400.\frac{1}{4}.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)

\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)

\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{25}\right)\)

\(A=8400.\frac{1}{4}.\frac{24}{25}\)

\(A=2016\)

18 tháng 3 2019

\(A=\frac{2}{5\cdot9}+\frac{2}{9\cdot13}+...+\frac{2}{55\cdot59}\)

\(A=2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{55}-\frac{1}{59}\right)\)

\(A=2\left(\frac{1}{5}-\frac{1}{59}\right)\)

\(A=2\left(\frac{59}{295}-\frac{5}{295}\right)\)

\(A=2\cdot\frac{54}{295}\)

\(A=\frac{536}{295}\)

11 tháng 4 2017

\(4S=4.\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}\right)\)

=\(\frac{4}{5.9}+\frac{4}{9.13}+....+\frac{4}{21.25}_{ }\)

=\(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+....+\frac{1}{21}-\frac{1}{23}\)

=\(\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)

=> \(S=\frac{4}{25}:4=\frac{4}{25}.\frac{1}{4}=\frac{1}{25}\)

11 tháng 4 2017

\(S=\frac{1}{5\times9}+\frac{1}{9\times13}+...+\frac{1}{21\times25}\)

\(S\times4=\frac{4}{5\times9}=\frac{4}{9\times13}+...+\frac{4}{21\times25}\)

\(S\times4=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{21}-\frac{1}{25}\)

\(S\times4=\frac{1}{5}-\frac{1}{25}\)

\(S\times4=\frac{4}{25}\)

\(S=\frac{1}{25}\)

25 tháng 2 2023

\(\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{21.25}\\ =\dfrac{4\cdot\dfrac{1}{4}}{5.9}+\dfrac{4\cdot\dfrac{1}{4}}{9.13}+...+\dfrac{4\cdot\dfrac{1}{4}}{21.25}\\ =\dfrac{1}{4}\left(\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{21.25}\right)\\ =\dfrac{1}{4}\cdot\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{21}-\dfrac{1}{25}\right)\\ =\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{25}\right)=\dfrac{1}{4}\left(\dfrac{5}{25}-\dfrac{1}{25}\right)\\ =\dfrac{1}{4}\cdot\dfrac{4}{25}=\dfrac{1}{25}\)

25 tháng 2 2023

`1/(5.9) + 1/(9.13) + ...+ 1/(21.25)`

`= 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/21 - 1/25`

`= 1/5 - 1/25`

`= 4/25`