K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)

\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)

hay \(A=\dfrac{-4949}{19800}\)

7 tháng 4 2015

=1/2-1/3-1/4+1/3-1/4-1/5+1/5-1/6-1/7+...+1/35-1/36-1/37

giao hoán, kết hợp là ra nha

17 tháng 8 2017

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

A x 3 = 99x100x101

A = 99x100x101 : 3

A = 333300 

17 tháng 8 2017

Ta có:

\(A=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Leftrightarrow3A=99.100.101\Leftrightarrow A=\frac{99.100.101}{3}=333300\)

\(B=1.2.3+2.3.4+4.5.6+...+98.99.100\)

\(\Rightarrow4B=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+4.5.6.\left(7-3\right)+...+98.99.100.\left(101-97\right)\)

\(\Rightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100\)

\(\Leftrightarrow4B=98.99.100.101\Leftrightarrow B=\frac{98.99.100.101}{4}=24497550\)

24 tháng 4 2017

Giải:

Ta có:

\(A=2\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\right).\)

\(A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}.\)

\(A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}.\)

\(A=\left(\dfrac{1}{2.3}-\dfrac{1}{2.3}\right)+\left(\dfrac{1}{3.4}-\dfrac{1}{3.4}\right)+...+\left(\dfrac{1}{98.99}-\dfrac{1}{98.99}\right)+\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right).\)

\(A=0+0+...+0+\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right).\)

\(A=\dfrac{1}{1.2}-\dfrac{1}{99.100}.\)

\(A=\dfrac{1}{2}-\dfrac{1}{9900}.\)

\(A=\dfrac{4950}{9900}-\dfrac{1}{9900}.\)

\(A=\dfrac{4949}{9900}.\)

Vậy \(A=\dfrac{4949}{9900}.\)

~ Chúc bn học tốt!!! ~

Bài mik đúng thì nhớ tick mik nha!!!

24 tháng 4 2017

:P

22 tháng 2 2020

ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương

1 tháng 4 2022

úp tui giúp tui

3 tháng 8 2015

bạn li-ke cho I love U thì ai giải cho bạn nữa