K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

Đặt \(A=\frac{1}{2003.2004}-\frac{1}{2002.2003}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow-A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2002.2003}+\frac{1}{2003.2004}\)

\(\Rightarrow-A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2004}\)

\(\Rightarrow-A=1-\frac{1}{2004}\)

\(\Rightarrow-A=\frac{2003}{2004}\)

\(\Rightarrow A=\frac{-2003}{2004}\)

26 tháng 6 2017

a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)

\(A=1-\frac{1}{99}\)

\(A=\frac{98}{99}\)

thay A vào, ta được :

\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)

b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)

\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)

đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)

\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)

\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)

\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(A=2.\left(1-\frac{1}{99}\right)\)

\(A=2.\frac{98}{99}\)

\(A=\frac{196}{99}\)

Thay A vào, ta được :

\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)

27 tháng 8 2015

à mình nhầm có phải thế này không

1/100.99 - 1/99.98 - 1/98.97 -...- 1/3.2 - 1/2.1
=-(1/100.99 + 1/99.98 + 1/98.97 +...+ 1/3.2 + 1/2.1)
=-(1/2.1+1/3.2 +...+1/98.97+ 1/99.98 +1/100.99 )
=-(1/1.2+1/2.3+1/3.4+...+1/97.98+ 1/98.99 +1/99.100)
=-(1/1-1/2+1/2-1/3+1/3......-1/98+1/98-1/99+1/99-1/100)
=-(1/1-1/100)=-99/100

14 tháng 7 2018

\(P=\)\(-1+\frac{1}{2.1}+\frac{1}{3.2}+\frac{1}{4.3}+...+\frac{1}{2018.2017}+\frac{1}{2018}\)

\(P=-1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}+\frac{1}{2018}\)

\(P=-1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}\)

\(P=-1+1-\frac{1}{2018}+\frac{1}{2018}\)

\(P=0\)

14 tháng 7 2018

\(P=-1+\frac{1}{2.1}+\frac{1}{3.2}+\frac{1}{4.3}+...+\frac{1}{2018.2017}+\frac{1}{2018}\)

\(P=-1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}+\frac{1}{2018}\)

\(P=-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}\)

P = 0

24 tháng 8 2015

-49/50                                  

19 tháng 7 2015

\(P=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{2000.1999}-\left(\frac{1}{1999.1998}+\frac{1}{1998.1997}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(=\frac{1}{3998000}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)

\(=\frac{1}{3998000}-\left(1-\frac{1}{1999}\right)=\frac{1}{3998000}-\frac{1998}{1999}\)

Chỉ nên ghi ra bấy nhiêu. không nên ghi ra đáp án nữa nha bạn ^^ Thầy mình dặn vậy đó ^^

12 tháng 9 2021

\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}=\dfrac{1}{2014}-\left(\dfrac{1}{2013.2014}+\dfrac{1}{2012.2013}+....+\dfrac{1}{1.2}\right)=\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2012}-\dfrac{1}{2013}+...+1-\dfrac{1}{2}\right)=\dfrac{1}{2014}-\left(1-\dfrac{1}{2014}\right)=\dfrac{1}{2014}-\dfrac{2013}{2014}=-\dfrac{2012}{2014}=-\dfrac{1006}{1007}\)

12 tháng 9 2021

Giúp mình với khocroi

11 tháng 9 2016

\(\frac{1}{200}-\frac{1}{200.199}-\frac{1}{199.198}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{200}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{198.199}+\frac{1}{199.200}\right)\)

\(=\frac{1}{200}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{198}-\frac{1}{199}+\frac{1}{199}-\frac{1}{200}\right)\)

\(=\frac{1}{200}-\left(1+\frac{1}{200}\right)\)

\(=\left(\frac{1}{200}-\frac{1}{200}\right)-1\)

\(=0-1\)

\(=-1\)