K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

Giúp mình

7 tháng 3 2017

Ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2004.2005.2006}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2004.2005}-\frac{1}{2005.2006}\)

\(=\frac{1}{1.2}-\frac{1}{2005.2006}\)

\(=\frac{1}{2}-\frac{1}{4022030}\)

\(=-40220295.\)

2 tháng 2 2023

\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2004.2005.2006}\)

\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)+2.\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+...+2.\left(\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)

\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)

\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2005.2006}\right)\)

\(=1-\dfrac{2}{2005.2006}\)

\(=\dfrac{2011014}{2011015}\).

Ta có:

\(M=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2004.2005.2006}\)

\(M=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{2004.2005.2006}\right)\)

\(M=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)

\(M=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2005.2006}\right)\)

 

14 tháng 7 2018

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2004.2005.2006}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2004.2005}-\frac{1}{2005.2006}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2005.2006}\right)\)

\(=\frac{1}{4}-\frac{1}{2.2005.2006}\)

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2004.2005.2006}\)

\(=\frac{2}{1.2}-\frac{2}{2.3}+\frac{2}{2.3}-\frac{2}{3.4}+...+\frac{2}{2004.2005}-\frac{2}{2005.2006}\)

\(=\frac{2}{1.2}-\frac{2}{2005.2006}\)

\(=1-\frac{1}{2011015}\)

\(=\frac{2011015}{2011015}-\frac{1}{2011015}\)

\(=\frac{2011014}{2011015}\)

Cbht

7 tháng 5 2018

tao có:

2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)

2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)

2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)

2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)

2p=1/1.2-1/(n+1).(n+2)

2p=(n+!).(n+2)-2/(2n+2).(n+2)

suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)

2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50

2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49

2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50

2s=1/1.2-1/49.50

'2s=1/2-1/2450

2s=1225/2450-1/2450

2s=1224/2450

s=612/1225

8 tháng 5 2018

\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1

\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)

S cx tinh giong v

15 tháng 5 2023

\(B=\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+...+\dfrac{1}{8.9.10}\)

\(B=2.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)

\(B=2.\left(1-\dfrac{1}{10}\right)\)

\(B=2.\dfrac{9}{10}\)

\(B=\dfrac{9}{5}\)

15 tháng 5 2023

anh ơi , đại học rồi mà ko giải đc bài này ạ?

 

2 tháng 4 2016

khó à nha

14 tháng 2 2018

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}...+\frac{2}{8.9.10}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)=\frac{11}{45}\)

14 tháng 2 2018

     \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)\)

\(=\frac{1}{2}.\frac{22}{45}\)

\(=\frac{11}{45}\)

23 tháng 3 2016

3299/9900 nho k cho minh nha