Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right) = \frac{9}{{12}} + \left( {\frac{6}{{12}} - \frac{4}{{12}}} \right) = \frac{9}{{12}} + \frac{2}{{12}} = \frac{{11}}{{12}}\)
\(\frac{3}{4} + \frac{1}{2} - \frac{1}{3} = \frac{9}{{12}} + \frac{6}{{12}} - \frac{4}{{12}} = \frac{{15}}{{12}} - \frac{4}{{12}} = \frac{{11}}{{12}}\)
Vậy \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right)\) = \(\frac{3}{4} + \frac{1}{2} - \frac{1}{3}\)
b)\(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right) = \frac{4}{6} - \left( {\frac{3}{6} + \frac{2}{6}} \right) = \frac{4}{6} - \frac{5}{6} = \frac{{ - 1}}{6}\)
\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3} = \frac{4}{6} - \frac{3}{6} - \frac{2}{6} = \frac{1}{6} - \frac{2}{6} = \frac{{ - 1}}{6}\)
Vậy \(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right)\)=\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3}\).
`#3107`
`a)`
`3/4 + (1/2 - 1/3)`
`= 3/4 + (3/6 - 2/6)`
`= 3/4 + 1/6`
`= 11/12`
`3/4 + 1/2 - 1/3`
`= 9/12 + 6/12 - 4/12`
`= (9 + 6 - 4)/12`
`= 11/12`
Vì `11/12 = 11/12`
`=> 3/4 + (1/2 - 1/3) = 3/4 + 1/2 - 1/3`
`b)`
`2/3 - (1/2 + 1/3)`
`= 2/3 - (3/6 + 2/6)`
`= 2/3 - 5/6`
`= -1/6`
`2/3 - 1/2 - 1/3`
`= 4/6 - 3/6 - 2/6`
`= (4 - 3 - 2)/6`
`= -1/6`
Vì `-1/6 = -1/6`
`=> 2/3 - (1/2 + 1/3) = 2/3 - 1/2 - 1/3`
a)
\(\begin{array}{l}{\left( {\frac{{ - 1}}{2}} \right)^5} = \frac{{{{\left( { - 1} \right)}^5}}}{{{2^5}}} = \frac{{ - 1}}{{32}};\\{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \frac{{16}}{{81}};\\{\left( { - 2\frac{1}{4}} \right)^3} = {\left( {\frac{{ - 9}}{4}} \right)^3} = \frac{{{{\left( { - 9} \right)}^3}}}{{{4^3}}} = \frac{{-729}}{{64}};\\{\left( { - 0,3} \right)^5} = {\left( {\frac{{ - 3}}{{10}}} \right)^5} = \frac{{ - 243}}{{100000}};\\{\left( { - 25,7} \right)^0} = 1\end{array}\)
b)
\(\begin{array}{l}{\left( { - \frac{1}{3}} \right)^2} = \frac{1}{9};\\{\left( { - \frac{1}{3}} \right)^3} = \frac{{ - 1}}{{27}};\\{\left( { - \frac{1}{3}} \right)^4} = \frac{1}{{81}};\\{\left( { - \frac{1}{3}} \right)^5} = \frac{{ - 1}}{{243}}.\end{array}\)
Nhận xét:
+ Luỹ thừa của một số hữu tỉ âm với số mũ chẵn là một số hữu tỉ dương.
+ Luỹ thừa của một số hữu tỉ âm với số mũ lẻ là một số hữu tỉ âm.
a) \({\left[ {{{\left( { - 2} \right)}^2}} \right]^3} = {\left( { - 2} \right)^2}.{\left( { - 2} \right)^2}.{\left( { - 2} \right)^2} = {\left( { - 2} \right)^{2 + 2 + 2}} = {\left( { - 2} \right)^6}\)
Vậy \({\left[ {{{\left( { - 2} \right)}^2}} \right]^3}\) = \({\left( { - 2} \right)^6}\)
b) \({\left[ {{{\left( {\frac{1}{2}} \right)}^2}} \right]^2} = {\left( {\frac{1}{2}} \right)^2}.{\left( {\frac{1}{2}} \right)^2} = {\left( {\frac{1}{2}} \right)^4}\)
Vậy \({\left[ {{{\left( {\frac{1}{2}} \right)}^2}} \right]^2}\) = \({\left( {\frac{1}{2}} \right)^4}\).
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)\cdot\cdot\cdot\cdot\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)
\(A=\left(\frac{-3}{4}\right)\left(\frac{-8}{9}\right)\left(\frac{-15}{16}\right)\cdot\cdot\cdot\left(\frac{-4052168}{4052169}\right)\left(\frac{-4056195}{4056196}\right)\)
\(A=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot\frac{-3\cdot5}{4\cdot4}\cdot....\cdot\frac{-2012\cdot2014}{2013\cdot2013}\cdot\frac{-2013\cdot2015}{2014\cdot2014}\)
\(A=\frac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot....\cdot\left(-2012\right)\cdot\left(-2013\right)}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\cdot\frac{3\cdot4\cdot5\cdot....\cdot2014\cdot2015}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\)
\(A=\frac{-1}{2014}\cdot\frac{2015}{2}=\frac{-2015}{4028}\)
Ta thấy \(\frac{-2015}{4028}< \frac{-1}{2}\) \(\Rightarrow A< B\)
Ta có : \(\frac{1}{n^2}-1=\frac{1-n^2}{n^2}=\frac{\left(1-n\right)\left(1+1\right)}{n^2}\)
Áp dụng :
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)
\(=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.\frac{-3.5}{4.4}.....\frac{-2013.2015}{2014.2014}\)
\(=\frac{-\left(1.2.3...2013\right)\left(3.4.5....2015\right)}{\left(2.3.4.....2014\right)\left(2.3.4......2014\right)}=\frac{-2015}{2014.2}=\frac{-2015}{4028}\)
Sr còn thiếu
\(A=-\frac{2015}{4028}< \frac{-2014}{4028}=-\frac{1}{2}\)
Vậy \(A< B\)
Theo bài ra , ta có :
\(\left(2.5\right)^2=10^2\)
\(2^2.5^2=\left(2.5\right)^2=10^2\)
Vì \(10^2=10^2=100\)
Vậy \(\left(2.5\right)^2=2^2.5^2\)
b)
\(\left(\frac{1}{2}.\frac{3}{4}\right)^3=\left(\frac{1}{2}\right)^3.\left(\frac{3}{4}\right)^3\)
mà \(\left(\frac{1}{2}\right)^3.\left(\frac{3}{4}\right)^3\) là vế phải
Vậy \(\left(\frac{1}{2}.\frac{3}{4}\right)^3=\left(\frac{1}{2}\right)^3.\left(\frac{3}{4}\right)^3\)