K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2015

Đặt \(A=1+2+2^2+2^3+...+2^{2008}\)

\(2A=2.\left(1+2+2^2+2^3+...+2^{2008}\right)\)

\(2A=2+2^2+2^3+...+2^{2009}\)\(2A-A=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+...+2^{2008}\right)\)

\(A=2^{2009}-1\)

\(\Rightarrow S=\frac{2^{2009}-1}{1-2^{2009}}\)

\(S=\frac{2^{2009}-1}{-\left(-1+2^{2009}\right)}=\frac{2^{2009}-1}{-\left(2^{2009}-1\right)}=-1\)

14 tháng 3 2020

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}\)

\(A=\frac{2^{100}-1}{2^{100}}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}\)

hok tốt!!

7 tháng 5 2019

B=\(\frac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)=\(\frac{2+2^2+2^3...+2^{2009}-1-2-2^2-...-2^{2008}}{\left(1-2^{2009}\right)}\)=\(\frac{2^{2009}-1}{1-2^{2009}}\)=-1

Vậy: B=-1

7 tháng 5 2019

\(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)

\(2B=\frac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)

\(2B-B=\frac{\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)}{1-2^{2009}}\)

\(B=\frac{2^{2009}-1}{1-2^{2009}}\)

\(B=-1\)

21 tháng 3 2017

a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)

\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)

\(\Leftrightarrow8x=-\frac{5}{4}\)

\(\Leftrightarrow x=-\frac{5}{32}\)

c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)

\(\Leftrightarrow x+1=2003\)

\(\Leftrightarrow x=2002\)

26 tháng 5 2018

1.

\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

cứ làm như vậy ta được :

\(=1+1=2\)

26 tháng 5 2018

2. Ta có :

\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)

vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\)\(\frac{2009}{2010}>\frac{2009}{2009+2010}\)

\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)

14 tháng 4 2017

khó wá câu này i don't know

16 tháng 4 2019

Đặt \(A=1+2+2^2+2^3+....+2^{2008}\)

\(2A=2+2^2+2^3+2^4+....+2^{2019}\)

\(A=2^{2019}-1\)

\(\Rightarrow B=\frac{2^{2019}-1}{1-2^{2019}}=\frac{-\left(1-2^{2019}\right)}{1-2^{2019}}=-1\)