Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1.2 + 2.3 + 3.4 + 4.5 + ..... + 99.100
3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+99.100.(101-98)
3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101
3S=99.100.101
S=99.100.101/3
S=333300
1. ta có :
\(3^2+4^2=5^{x-1}\)
\(25=5^{x-1}\)
\(5^2=5^{x-1}\)
=> x = 3
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101
=> 3S = 99.100.101
=> S = 99.100.101/3
=> S = 333300
`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`
`3S = 1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`
`3S = 1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`
`3S = 99.100.101`
`S = 33.100.101`
`S = 333300`
3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100
=99.100.101
S=33.100.101
=333300
Dễ mà , cô giáo minh vừa dạy xong:
Nhận xét:Khoảng cách giữa 2 thừa số trong mỗi số hạng là 1. Ta nhân 2 vế của S với 3 lần khoảng cách này ,ta được:
3S=3.(1.2+2.3+3.4+4.5+...+99.100)
3S=1.2.3+2.3.3+3.4.3+4.5.3+....+99.100.3
3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+....+99.100.(101-98)
3S=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+99.100.101-98.99.100
3S=99.100.101
S=99.100.101 /3
S=1.2+ 2.3+4,5.......+99.100
Nhân cả 2 vế với 3, ta được:
3S=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
----> S = (99.100.101):3
S= 333300
Vậy A=333300
S = 1.2 + 2.3 + ... + 99.100
4S = 1.2.(3 - 0) + 2.3.(4 - 1) + ... + 99.100.(101 - 98)
4S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100
4S = (1.2.3 + 2.3.4 +...+ 99.100.101) - (0.1.2 + 1.2.3 +...+ 98.99.100)
4S = 99.100.101 - 0.1.2
4S = 99.100.101
S = 99.25.101
S = 249975
\(S=1.2+2.3+3.4+4.5+5.6+...+99.100\)
\(3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)\(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101+98.99.100\)
\(3S=\left(1.2.3-1.2.3\right)+\left(2.3.4-2.3.4\right)+...+\left(98.99.100-98.99.100\right)+99.100.101\)
\(3S=99.100.101=9999000\)
\(S=9999000:3=3333000\)
\(\Rightarrow S=3333000\)
S=1.2+2.3+3.4+...+99.100
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3S=99.100.101
S=(99.100.101):3=333300
ta có \(3S=1\cdot2\cdot3+2\cdot3\cdot3+.....+99\cdot100\cdot3\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)....+99\cdot100\cdot\left(101-98\right)\)
\(3S=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-......-98\cdot99\cdot100+99\cdot100\cdot101\)
\(3S=99.100.101\)
\(S=\frac{99\cdot100\cdot101}{3}\)
S=...
3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
3S=99.100.101
S=33.100.101
S=333300
Vậy S=333300
Bài này mình vừa giải :D http://olm.vn/hoi-dap/question/185493.html -- số khác
Ta có 3 x S = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3
3 x S = 1 x 2 x (3 - 0) + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + ... + 99 x 100 x (101 - 98)
3 x S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + .. + 99 x 100 x 101 - 98 x 99 x 100
=> 3 x S = 99 x 100 x 101
=> A = 33 x 100 x 101 = 333300
=333300 nhe