Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đầu bài
=> 52S=52+54+56+...+5202
=>52S-S= (52+54+56+...+5202)-(1+52+54+...+5200)
=> 24.S = 5202-1
=> S = \(\frac{5^{202}-1}{24}\)
Lời giải:
Gọi tổng trên là $K$
$K=1+5^2+5^3+5^4+...+5^{200}$
$5K=5+5^3+5^4+5^5+...+5^{201}$
$\Rightarrow 5K-K = 5+5^{201}-1-5^2$
$\Rightarrow 4K = 5^{201}-21$
$\Rightarrow K= \frac{5^{201}-21}{4}$
chán!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Lời giải:
\(S=1+5^2+5^4+....+5^{198}+5^{200}\) (1)
\(\Rightarrow 5^2.S=5^2+5^4+...+5^{200}+5^{202}\) (2)
Lấy (2) trừ (1):
\(S(5^2-1)=(5^2+5^4+...+5^{200}+5^{202})-(1+5^2+....+5^{200})\)
\(\Leftrightarrow 24S=5^{202}-1\Leftrightarrow S=\frac{5^{202}-1}{24}\)
\(S=1+5^2+5^4+...+5^{200}.\)
\(5^2S=5^2\left(1+5+5^2+...+5^{200}\right).\)
\(5^2S=5^2+5^4+5^6+...+5^{202}.\)
\(5^2S-S=\left(5^2+5^4+5^6+...+5^{202}\right)-\left(1+5^2+5^4+...+5^{200}\right).\)
\(24S=5^{202}-1\Rightarrow S=\dfrac{5^{202}-1}{24}.\)
Vậy.....
a.S=1+52+54+...+5200
=>25S=52+54+56+...+5202
=>25S-S=(52+54+56+...+5202)-(1+52+54+...+5200)
=>24S=5202-1
\(\Rightarrow S=\frac{5^{202}-1}{24}\)
b.ta có:
\(\frac{a-1}{2}=\frac{5a-5}{10};\frac{b+3}{4}=\frac{3b+9}{12};\frac{c-5}{6}=\frac{4c-20}{24}\)
\(\Rightarrow\frac{5a-5}{10}=\frac{3b+9}{12}=\frac{4c-20}{24}=\frac{5a-5-3b-9-4c+20}{10-12-24}=\frac{\left(5a-3b-4c\right)+\left(20-9-5\right)}{-26}\)
\(=\frac{46+6}{-26}=\frac{52}{-26}=-2\)
\(\Rightarrow a-1=-2.2=-4\Rightarrow a=-3\)
\(\Rightarrow b+3=-2.4\Rightarrow b=-11\)
\(\Rightarrow c-5=-2.6=-12\Rightarrow c=-7\)
vậy a=-3;b=-11;c=-7
\(\frac{a-1}{2}\) = \(\frac{b+3}{4}\)=\(\frac{c-5}{6}\)và 5a-3b-4c=46
\(\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}=k\)\(\overline{1}\)
a=2k+1
b= 4k-3
c=6k+5
Thay vào \(\overline{1}\)ta đc : 5(2k+1)-3(4k-3)-4(6k+5)=46
=10k+5-12k-9-32k+20=46
=\(\frac{10k-32k-12k}{5-9-20}=-\frac{46}{24}=-\frac{23}{12}\)??????????????????
\(S=1+5+5^2+5^4+...+5^{200}\)
\(\Leftrightarrow5^2S=5^2+5^4+...+5^{202}\)
\(\Leftrightarrow25S=5^2+5^4+...+5^{202}\)
\(\Leftrightarrow25S-S=5^{202}-1\)
\(\Leftrightarrow S=\left(5^{202}-1\right)\div24\)
a) S = 1 + 52 + 54 + ... + 5200
=> 52S = 52.(1 + 52 + 54 + ... + 5200)
=> 25S = 52 + 54 + 56 + ... + 5202
=> 25S - S = (52 + 54 + 56 + ... + 5202) - (1 + 52 + 54 + ... + 5200)
=> 24S = 5202 - 1
=> S = \(\frac{5^{202}-1}{24}\)