Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=2\left(m^3+n^3\right)-3\left(m^2+n^2\right)\)
\(=2\left[\left(m+n\right)^3-3mn\left(m+n\right)\right]-3\left[\left(m+n\right)^2-2mn\right]\)
\(=2-6mn-3+6mn\)
=-1
c: \(C=\left(a-1\right)^3-4a\left(a+1\right)\left(a-1\right)+3\left(a-1\right)\left(a^2+a+1\right)\)
\(=a^3-3a^2+3a-1-4a\left(a^2-1\right)+3a^3-3\)
\(=4a^3-3a^2+3a-4-4a^3+4a\)
\(=-3a^2+7a-4\)
\(=-3\cdot9-21-4\)
=-27-21-4
=-52
\(n+13=a^2,n+33=b^2,\left(b>a\ge0;a,b\inℤ\right)\).
\(b^2-a^2=n+33-\left(n+13\right)=20\)
\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=20\)
Có \(a,b\)là số nguyên nên \(b+a,b-a\)là các ước của \(20\)mà lại có \(\left(b+a\right)+\left(b-a\right)=2b\)là số chẵn nên \(b+a,b-a\)cùng tính chẵn lẻ, do đó ta chỉ có trường hợp:
\(\hept{\begin{cases}b+a=10\\b-a=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=6\end{cases}}\)
suy ra \(n=3\).
ta giả sử;
\(\hept{\begin{cases}a^2=n+13\\b^2=n+33\end{cases}\Rightarrow b^2-a^2=20}\) ha y \(\left(b-a\right)\left(b+a\right)=20\Rightarrow\orbr{\begin{cases}b-a=1\\b-a=2\end{cases}\text{ hoặc }b-a=4}\)
với \(\hept{\begin{cases}b-a=1\\b+a=20\end{cases}}\) hoặc \(\hept{\begin{cases}b-a=4\\b+a=5\end{cases}}\)mâu thuẫn với a,b là số tự nhiên
với \(\hept{\begin{cases}b-a=2\\b+a=10\end{cases}\Leftrightarrow\hept{\begin{cases}b=6\\a=4\end{cases}\Rightarrow n=3}}\)
Ta có
A = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 + 7 3 + 8 3 + 9 3 + 10 3 = ( 1 3 + 10 3 ) + ( 2 3 + 9 3 ) + ( 3 3 + 8 3 ) + ( 4 3 + 7 3 ) + ( 5 3 + 6 3 ) = 11 ( 1 2 – 10 + 10 2 ) + 11 ( 2 2 – 2 . 9 + 9 2 ) + … + 11 ( 5 2 – 5 . 6 + 6 2 )
Vì mỗi số hạng trong tổng đều chia hết cho 11 nên A ⁝ 11.
Lại có
A = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 + 7 3 + 8 3 + 9 3 + 10 3 = ( 1 3 + 9 3 ) + ( 2 3 + 8 3 ) + ( 3 3 + 7 3 ) + ( 4 3 + 6 3 ) + ( 5 3 + 10 3 ) = 10 ( 1 2 – 9 + 9 2 ) + 10 ( 2 2 – 2 . 8 + 8 2 ) + … + 5 3 + 10 3
Vì mỗi số hạng trong tổng đều chia hết cho 5 nên A ⁝ 5.
Vậy A chia hết cho cả 5 và 11
Đáp án cần chọn là: C
Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6
Xem nội dung đầy đủ tại:https://123doc.org//document/4209455-de-da-hsg-toan-8-huyen-tam-duong-2016-2017.htm
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.
\(S=1^3+2^3+...+n^3\)
\(\Rightarrow S=\left(1+2+3+...+n\right)^2\)
Bạn có thể tham khảo lời giải tại đây: https://diendantoanhoc.org/topic/81694-t%C3%ADnh-t%E1%BB%95ng-s-13-23-33-n3/