K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

Chọn đáp án C

Hai đường tiệm cận tạo với hai trục tọa độ một hình chữ nhật có diện tích bằng 3 suy ra

5 tháng 12 2017

Đáp án C

Phương pháp :

+)  Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2

y = f’(m – 2)(x – m +2)+y(m – 2) (d)

+) Xác định các giao điểm của d và các đường tiệm cận => x2;y1

+) Thay vào phương trình x2 + y1 = –5 giải tìm các giá trị của m.

Cách giải: TXĐ: D = R\ {–2}

Ta có 

=>Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2 là: 

Đồ thị hàm số  y = x - 1 x + 2  có đường TCN y = 1và tiệm cậm đứng x = –2

28 tháng 10 2018

Chọn A

1 tháng 10 2018

Chọn C

19 tháng 6 2021

Sao lại bằng -3 được ạ? 

18 tháng 7 2017

Đáp án C

Dễ thấy với m < 0 thì hàm không có tiệm

cận ngang vì x không tiến đến ∞

Với m = 0, hàm có dạng y = x + 1 và cũng

không có tiệm cận ngang

Với m > 0, ta có:

Xét  lim x → + ∞ x + 1 m x 2 + 1 = lim x → + ∞ 1 + 1 x m + 1 x = 1 m

Lại có  lim x → - ∞ x + 1 m x 2 + 1 = lim x → - ∞ 1 + 1 x - m + 1 x = 1 - m

⇒ Hàm có 2 tiệm cận ngang

23 tháng 6 2017

Đáp án A.

Phương pháp: Suy ra cách vẽ của đồ thị hàm số y = |f(x – 1) + m| và thử các trường hợp và đếm số cực trị của đồ thị hàm số. Một điểm được gọi là cực trị của hàm số nếu tại đó hàm số liên tục và đổi chiều. 

Cách giải: Đồ thị hàm số y = f(x – 1) nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x) sang phải 1 đơn vị nên không làm thay đổi tung độ các điểm cực trị

Đồ thị hàm số y = f(x – 1) + m nhận được bằng cách tịnh tiến đồ thị hàm số y = f(x – 1) lên trên m đơn vị nên ta có: yCD = 2 + m; yCT = –3 + m; yCT = –6 + m

Đồ thị hàm số y = |f(x – 1) + m| nhận được bằng cách từ đồ thị hàm số y = f(x – 1) + m lấy đối xứng phần đồ thị phía dưới trục hoành qua trục hoành và xóa đi phần đồ thị phía dưới trục hoành.

Để đồ thị hàm số có 5 cực trị 

=>S = {3;4;5} => 3+4+5 = 12

4 tháng 12 2019

Đáp án là A

28 tháng 9 2017

Đáp án A

10 tháng 5 2017