K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

\(a,\left|x+2\right|=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

\(b,\left|x-5\right|=\left|-7\right|\)

\(\Leftrightarrow\left|x-5\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=7\\x-5=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-2\end{matrix}\right.\)

\(c,\left(7-x\right)-\left(25+7\right)=-25\)

\(\Leftrightarrow7-x-32=-25\)

\(\Leftrightarrow x=0\)

\(d,\left|x-3\right|=\left|5\right|+\left|-7\right|\)

\(\Leftrightarrow\left|x-3\right|=12\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)

20 tháng 12 2022

Bạn ấy thay đề trc khi anh đăng đấy em

1 tháng 9 2021

\(B=1-5+5^{^2}-5^{^3}+...-5^{^{99}}+5^{^{100}}\)

\(5B=5-5^{^2}+5^{^3}-5^{^4}+...-5^{^{100}}+5^{^{101}}\)

\(5B+B=\left(5-5^{^2}+5^{^3}-5^{^4}+...-5^{^{100}}+5^{^{101}}\right)+\left(1-5+5^{^2}-5^{^3}+...-5^{^{99}}+5^{^{100}}\right)\)

\(6B=5^{^{101}}+1\)

\(B=\dfrac{5^{^{101}}+1}{6}\)

25 tháng 12 2022

Ai bt =)))

 

26 tháng 12 2022

a)58.(-73)=58.(-27)                                                                                           =58.[(-73)+(-27)]                                                                                               =58.(-100)                                                                                                         =(-5800)      

22 tháng 7 2023

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

GH
22 tháng 7 2023

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

15 tháng 12 2017

a​) S=1 + 2 + 2^2 + 2^3 +...+ 2^63

   2S=2 + 2^2 + 2^3 + 2^4 +...+ 2^64

   S=2S-S=(2 + 2^2 + 2^3 + 6^4 +...+ 2^64)-(1 + 2 + 2^2 + 2^3 +...+ 2^63)

   S=2 + 2^2 + 2^3 + 2^4 +...+ 2^64 - 1 - 2 - 2^2 - 2^3 -...- 2^63

   S=2^64 - 1

15 tháng 12 2017
b) đâu
26 tháng 10 2017

a)số các số hạng trong S là:

(98-2):2+1=49(số)

Tổng S là:

(2+98).45:2=2250

b) số các số hạng là:

(99-1):2+1=50(số)

tổng S là:

(99+1).50:2=2500

26 tháng 10 2017

S:2+4+6+8+...+98=2450

S:1+3+5+7+...+99=2500

6 tháng 10 2015

1-2+3-4+5-6+...+99-100+101 
= (1+3+5+...+101) - (2+4+6+...+100) 
tu 1 den 101 co : (101-1):2+1=51 
1+..+101 = (1+101)x 51:2= 2601 
tu 2 den 100 co : (100-2);2+1=50 
2+...+100 = (100 +2) x 50:2=2550 
=> S= 2601-2550=51

15 tháng 1 2017

a)S=1-2+3-4+...+2005-2006

   S=(1-2)+(3-4)+...+(2005-2006)

   S=(-1)+(-1)+...+(-1)                     Dãy S có 2016 thì có 1008 cặp

   S=(-1)x1008

   S=-1008

b)Tương tự

c)S=1+2-3-4+5+6-7-8+...+2001+2002-2003-2004

   S=(1+2-3-4)+(5+6-7-8)+...+(2001+2002-2003-2004)

   S=(-4)+(-4)+...+(-4)              Dãy S có 2004 số => có 1002

   S=(-4)x1002

   S=-4008