K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) \({S_5} = \frac{{{u_1}\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{{{10}^5}\left( {1 - {{\left( {0,1} \right)}^5}} \right)}}{{1 - 0,1}} = 111110\).

b) Ta có: \({u_2} = {u_1}.q \Leftrightarrow  - 20 = 10.q \Leftrightarrow q =  - 2\)

\({S_5} = \frac{{{u_1}\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{10\left( {1 - {{\left( { - 2} \right)}^5}} \right)}}{{1 - \left( { - 2} \right)}} = 110\).

1:

\(S_8=\dfrac{u_1\cdot\left(1-q^8\right)}{1-q}=\dfrac{2048\cdot\left(1-\left(\dfrac{5}{4}\right)^8\right)}{1-\dfrac{5}{4}}\)

\(=-8192\left(1-\left(\dfrac{5}{4}\right)^8\right)\)

2:

\(u2=u1\cdot q\)

=>\(q=\dfrac{3}{-1}=-3\)

\(S_{10}=\dfrac{u1\left(1-q^{10}\right)}{1-q}=\dfrac{-1\cdot\left(1-\left(-3\right)^{10}\right)}{1-\left(-3\right)}\)

\(=\dfrac{-1}{4}\left(1-3^{10}\right)\)

2 tháng 10 2023

1, Ta có \(\left\{{}\begin{matrix}u_1=-1\\u_1.q=3\end{matrix}\right.\Rightarrow\dfrac{1}{q}=-\dfrac{1}{3}\Leftrightarrow q=-3\)

\(S_{10}=-1.\dfrac{1-\left(-3\right)^{10}}{1-\left(-3\right)}=14762\)

2, tương tự 

1:

\(S_{10}=\dfrac{u_1\cdot\left(1-q^{10}\right)}{1-q}=\dfrac{-3\cdot\left(1-\dfrac{1}{1024}\right)}{1-\dfrac{1}{2}}\)

\(=-6\cdot\dfrac{1023}{1024}=\dfrac{-3069}{512}\)

2:

\(\left\{{}\begin{matrix}u1=6\\u2=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\u1\cdot q=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\q=3\end{matrix}\right.\)

\(S_{12}=\dfrac{u_1\left(1-q^{12}\right)}{1-q}=\dfrac{6\cdot\left(1-3^{12}\right)}{1-3}=-3\cdot\left(1-3^{12}\right)\)

\(=3^{13}-3\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có:

\(\left. \begin{array}{l}{u_1} + {u_n} = {u_1} + {u_1} + \left( {n - 1} \right)d = 2{u_1} + \left( {n - 1} \right)d\\{u_2} + {u_{n - 1}} = {u_1} + d + \left( {n - 2} \right)d = {u_1} + \left( {n - 1} \right)d\\{u_n} + {u_1} = {u_1} + {u_1} + \left( {n - 1} \right)d = 2{u_1} + \left( {n - 1} \right)d\end{array} \right\} \Rightarrow {u_1} + {u_n} = {u_2} + {u_{n - 1}} = ... = {u_n} + {u_1}\)

b)    Dựa vào công thức vừa chứng minh ta có: \(n\left( {{u_1} + {u_n}} \right)\) = \(2{S_n}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_2} = {u_1}.q\)

\({u_3} = {u_1}.{q^2}\)

\({u_{n - 1}} = {u_1}.{q^{n - 2}}\)

\({u_n} = {u_1}.{q^{n - 1}}\)

\({S_n} = {u_1} + {u_1}q +  \ldots  + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}\)

b) \(q{S_n} = q{u_1} + {u_1}{q^2} +  \ldots  + {u_1}{q^{n - 1}} + {u_1}{q^n}\)

c) \({S_n} - q{S_n} = \left( {{u_1} + {u_1}q +  \ldots  + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}} \right) - (q{u_1} + {u_1}{q^2} +  \ldots  + {u_1}{q^{n - 1}} + {u_1}{q^n})\).

\(\begin{array}{l} \Leftrightarrow \left( {1 - q} \right){S_n} = {u_1} - {u_1}{q^n} = {u_1}\left( {1 - {q^n}} \right)\\ \Rightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_2} = {u_1}.q\)

\({u_3} = {u_2}.q = {u_1}.{q^2}\)

\({u_4} = {u_3}.q = {u_1}.{q^3}\)

\({u_5} = {u_4}.q = {u_1}.{q^4}\)

b) Từ a suy ra: \({u_n} = {u_1} \times {q^{n - 1}}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có:

\({S_n}.q = \left( {{u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}}} \right).q = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}}} \right).q = {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\)

\(\begin{array}{l}{S_n} - {S_n}.q = {u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}} - {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\\ = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}}} \right) - {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\\ = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}} - \left( {q + {q^2} + {q^3} + ... + {q^n}} \right)} \right)\\ = {u_1}\left( {1 - {q^n}} \right)\end{array}\)

b)    Ta có: \({S_n} - {S_n}.q = {u_1}\left( {1 - {q^n}} \right) \Leftrightarrow {S_n}\left( {1 - q} \right) = {u_1}\left( {1 - {q^n}} \right) \Leftrightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{\left( {1 - q} \right)}}\)

24 tháng 11 2023

Câu 1:

\(S_8=u_1+u_2+u_3+...+u_8\)

\(=\dfrac{u_1\left(1-q^8\right)}{1-q}=\dfrac{2048\cdot\left(1-\left(\dfrac{5}{4}\right)^8\right)}{1-\dfrac{5}{4}}\)

\(=\dfrac{325089}{8}\)

2: \(S_{10}=u_1+u_2+...+u_9+u_{10}\)

=>\(S_{10}=\dfrac{u_1\left(1-q^{10}\right)}{1-q}=\dfrac{-3\cdot\left(1-\left(\dfrac{1}{2}\right)^{10}\right)}{1-\dfrac{1}{2}}\)

\(=-6\cdot\left(1-\dfrac{1}{2^{10}}\right)=-6+\dfrac{6}{2^{10}}=-\dfrac{3069}{512}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có u6 = u1.q5 = 192 và u7 = u1.q6 = 384

Xét: \(\frac{{{u_6}}}{{{u_7}}} = \frac{{{u_1}{q^5}}}{{{u_1}.{q^6}}} = \frac{1}{q} = \frac{{192}}{{384}} = \frac{1}{2}\)

Suy ra: u1 = \(192:{\left( {\frac{1}{2}} \right)^5} = 6144\).

Vậy cấp số nhân có số hạng đầu u1 = 6 144 và công bội \(q = \frac{1}{2}\).

b) Ta có: u1 + u2 + u3 = u1 + u1.q + u1.q2 = 7

⇔ u1.(1 + q + q2) = 7

Và u5 – u2 = u1.q4 – u1.q = 14

⇔ u1q(q3 – 1) = 14

Suy ra: \(\frac{{{u_1}\left( {1 + q + {q^2}} \right)}}{{{u_1}q\left( {{q^3} - 1} \right)}} = \frac{7}{{14}}\)

\( \Leftrightarrow \frac{{{u_1}\left( {1 + q + {q^2}} \right)}}{{{u_1}q\left( {q - 1} \right)\left( {1 + q + {q^2}} \right)}} = \frac{7}{{14}}\)

⇔ 2 = q(q – 1)

⇔ q2 – q – 2 = 0

⇔ \(\left[{}\begin{matrix}q=2\\q=-1\end{matrix}\right.\)

Với q = 2 thì u1 = 1.

Với q = – 1 thì u1 = 7.