K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

Đáp án B

Phương pháp:

Đưa phương trình về dạng tích sau đó giải phương trình logarit cơ bản.

Cách giải:

ĐKXĐ: x > 0

Tổng lập phương các nghiệm của phương trình là: 33 + 23 = 35

25 tháng 3 2017

Đáp án A

30 tháng 1 2018

Điều kiện x > 1. Khi đó phương trình tương đương với

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Loại nghiệm x = -1 do không thỏa mãn điều kiện. Phương trình có một nghiệm x = 3. 

Chọn đáp án B.

NV
14 tháng 12 2018

ĐKXĐ: \(x>1\)

\(log_2\left(x-1\right)+log_2\left(x+1\right)=3\)

\(\Leftrightarrow log_2\left(x-1\right)\left(x+1\right)=3\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=8\)

\(\Leftrightarrow x^2-9=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-3< 1\left(l\right)\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{3\right\}\)

10 tháng 5 2017

1) X=log1-log2+log2-log3+...+log99-log100

=log1-log100

=0-2

=-2

Đáp án C

2)X=-log3100=-log3102=-2log3(2.5)=-2log32-2log35=-2a-2b

Đáp án A

15 tháng 11 2019

AH
Akai Haruma
Giáo viên
19 tháng 4 2020

Lời giải:

$\log(8.5^x+20^x)=x+\log 25$

$\Rightarrow 8.5^x+20^x=10^{x+\log 25}=10^x.25$

$\Rightarrow \frac{8.5^x+20^x}{10^x}=25$

$\Leftrightarrow \frac{8}{2^x}+2^x=25$

Đặt $2^x=t$ thì $\frac{8}{t}+t=25$

$\Leftrightarrow t^2-25t+8=0$

Dễ thấy PT trên luôn có 2 nghiệm dương $t_1,t_2$ nên kéo theo PT ban đầu có 2 nghiệm $x_1,x_2$

Tổng các nghiệm $x_1+x_2=\log_2(t_1)+\log_2(t_2)=\log_2(t_1t_2)=\log_2(8)=3$