Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Tổng là:
(-19+19)+(-18+18)+...+20=20
b: Tổng là:
-18+(-17+17)+...+0=-18
Ta thấy:
1 x 4 = 1 x 2 + 1 x 2
2 x 5 = 2 x 3 + 2 x 2
3 x 6 = 3 x 4 + 3 x 2
.................................
Suy ra:
D = (1 x 2 + 2 x 3 + 3 x 4 + .... + 97 x 98) + (1 x 2 + 2 x 2 + 3 x 2 + .... + 97 x 2)
D = (1x2+2x3+3x4+...+97x98) + (1+2+3+...+99)x2
D = (1x2+2x3+3x4+...+97x98) + 100 x 99 : 2
D - 100 x 99 : 2 = 1x2+2x3+3x4+...+97x98
D - 4950 = 1x2+2x3+3x4+...+97x98
(D - 4950) x 3 = 1x2x(3-0)+2x3x(4-1)+3x4x(5-2)+......+97x98x(99-96)
(D-4950)x3 = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + .... + 97 x 98 x 99 - 96 x 97 x 98
(D-4950)x3 = 97 x 98 x 99
Và từ đây ta có thể tìm hướng để ra kết quả
1, có từ 1đến 100 có 100 số hạng .Chia thành 50 nhóm .Mỗi nhóm co 2 số hạng
Suy ra A= [1+(-2)]+[3+(-4)]+......+[99+(-100)]
A= (-1)+(-1)+.... +(-1)
A= (-1).50=(-50)
2,A=(1-2)+(3-4)+.....+(2015-2016)
A=(-1)+(-1)+....+(-1)
A có 2016 số hạng .Chia thành 1008 nhóm .Mỗi nhóm co 2 số hạng và có tổng =(-1)
A=(-1).1008=(-1008)
\(A=\left(1+3+...+99\right)-\left(2+4+...+100\right)\)
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)
\(A=2500-2550=-50\)
Đúng ko ta lâu rồi ko làm.
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)
1)
A) 1+ (-2)+ 3+ (-4)+...+19+(-20)
<=> -1+(-1)+...+(-1)
có tất cả 10 số (-1) => -1*10= -10
B)1-2+3-4+...+99-100
<=> -1+(-1)+...+(-1)
Có tất cả 50 số (-1) =>-1*50=(-50)
Công thức tính tổng:
B1:SCSH:( cuối - đầu ) : khoảng cách + 1 = ? ( số hạng )
B2:Tổng:( cuối + đầu ) . SCSH : 2 = ?
Hk tốt
a) \(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}+\frac{x-4}{96}=4\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{98}-1+\frac{x-3}{97}-1+\frac{x-3}{96}-1=4-4\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}+\frac{x-100}{96}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
\(\Rightarrow x-1=0\) ( vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\) )
Vậy x = 1
b) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=3\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=3-3\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=0\)
\(\Rightarrow\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\ne0\)
=> x + 100 = 0
=> x = -100
c) \(\frac{x-1}{99}+\frac{x-2}{49}+\frac{x-4}{32}=6\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{49}-2+\frac{x-4}{32}-3=6-6\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{49}+\frac{x-100}{32}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\ne0\)
=> x - 100 = 0
=> x = 100
Chúc bạn học tốt
có người khác trả lời trước rồi nên chị ko trả lời đâu nhé em trai
\(A=1\times2+2\times3+3\times4+98\times99\\ =2+6+12+9702\\ =8+12+9702\\ =12+9710\\ =9722\)
`A = 1.2 + 2.3 + 3.4 + ... + 98.99`
`3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 98 . 99 . (100 - 97) `
`3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 98.99.100 - 97.98.99`
`3A = 98 . 99 . 100`
`A = 98.33.100 `
`A = 323400`