Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho mình hỏi ai ra đề vậy?
Giải:
19^100 = 10^100 + 9^100
= 1000000000000...(bằng 10 và 100 số không ở sau)
10^31 = 10^30 + 10^1
=1000000000...(bằng 10 và 30 số 0 phía sau)
Mình giải tới đó bạn tự suy luận tiép nhé!
200+201/201+202
=200/201+202+201/201+202
Ta thay 200/201>200/201+202
201/202>201/201+202
=>200/201/201+202<200/201+201/202
2009/2010=1-1/2010
2010/2011=1-1/2011
Vì 1/2010>1/2011
=>1-1/2010<1-1/2011
Vậy 2009/2010<2010/2011
So sánh :
\(202^{402}\)và \(402^{202}\)
\(\left(202^{201}\right)^2\)và \(\left(402^{101}\right)^2\)
=\(\left(201^{201}\right)^2\)và \(\left(202^{201}\right)^2^{101^2}\)
Vậy ....
\(\frac{201}{202}+\frac{202}{205}\)Và \(201+\frac{202}{202}+205\)
\(=\frac{201}{202}=\frac{201}{202}+\frac{1}{202}=\frac{202}{202}\)
\(\frac{202}{205}=\frac{202}{205}+\frac{3}{205}=\frac{205}{205}\)
\(201+1+205\)
Vậy \(1+1=2\)và \(407\)
=> \(\frac{201}{202}+\frac{202}{205}< 201+\frac{202}{202}+205\)
Ta có: \(\frac{201+202}{202+205}=\frac{201}{202+205}+\frac{202}{202+205}\)
Ta có: 202<202+205 => \(\frac{201}{202}>\frac{201}{202+205}\)(1)
205<202+205 => \(\frac{202}{205}>\frac{202}{202+205}\)(2)
Từ (1) và (2) => \(\frac{201}{202}+\frac{202}{205}>\frac{201+202}{202+205}\)
8(%7#2;3786(23#;8%7;23#?3#](?;32%78(23;%(3*2;]34((46(;13846(1;58]63#;?%]3;?85?;3]%68%63(#8%,8632;6%]3;6?%8%,3]?8%23#;8%3#2;%68((14?+^#]?&$%3]3#;(+3]4}](#^&?+(:^?%+(},]?%]}^^?,}#]?,#6?*6*3,#3,](6,(6,3]?73%,]7?%]83#?87%3#,?7%,]?7%3#],?%+78)76}#,^*],)#+/(#})(#]}]7?3#68]7}#(])}7+)](^]74(3+)(+7/4?}(*@?/3#?7^{%79{}7^?#/})7},#(7?:%#?:%*)7#6}?/+?+(7^,;{*?%;{,?+?%^{},?+{#,/%?^&]{#,?,]{?^+3(?^&%3/?(+,3/?^%+?+^#/%3^?}%+#/%?^}?&?%}&#/,?%^+#?}/^+7(}7#+/6?)/}#+76)#/?}7+#/}??7+%/}#??{7#}+%?{,+}#^8^kết quả là *,%^*^#,#61?*%*^^?,#^?%$ chúc bạn học giỏi nhe :)))
Bằng 5^57/7,71 cách giải 12:0,1+7/^1-729=5^57/7,71
5^57/7,71-3:3x2+2:4=5^57/7,71
Chúc bạn học giỏi nhe :)))) 👍👍👍👍👍👍👍👍👍
help me
help me!!!!!!!!!!
giup mk voi
nhae
giup mk!
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
..................tên em là jullei Trinh...........................
Ta có : \(202^{203}=(2\cdot101)^{3\cdot101}=(1^3\cdot101^3)^{101}=(8\cdot101\cdot10^{12}\cdot101)=(808\cdot1012)^{101}\)
\(303^{202}=(3\cdot101)^{2\cdot101}=(32\cdot101^2)^{101}=(9\cdot101^2)^{101}\)
\(\Rightarrow(808\cdot101^2)>(9\cdot101^2)\)
Vậy :
\(M=\dfrac{202}{7\cdot1010}+\dfrac{202}{10\cdot1313}+\dfrac{202}{13\cdot1616}+...+\dfrac{202}{91\cdot9494}\\ =\dfrac{202}{7\cdot10\cdot101}+\dfrac{202}{10\cdot13\cdot101}+\dfrac{202}{13\cdot16\cdot101}+...+\dfrac{202}{91\cdot94\cdot101}\\ =\dfrac{202}{101}\cdot\left(\dfrac{1}{7\cdot10}+\dfrac{1}{10\cdot13}+\dfrac{1}{13\cdot16}+...+\dfrac{1}{91\cdot94}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+...+\dfrac{3}{91\cdot94}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{91}-\dfrac{1}{94}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{7}-\dfrac{1}{94}\right)\\ =\dfrac{2}{3}\cdot\dfrac{87}{658}\\ =\dfrac{29}{329}\)