Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = 1/7 + 1/91 + 1/247 + 1/475 + 1/775 + 1/1147
=\(\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)
=\(\frac{1}{6}.\frac{6}{1.7}+\frac{1}{6}.\frac{6}{7.13}+\frac{1}{6}.\frac{6}{13.19}+\frac{1}{6}.\frac{6}{19.25}+\frac{1}{6}.\frac{6}{25.31}+\frac{1}{6}.\frac{6}{31.37}\)
=\(\frac{1}{6}\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+\frac{6}{19.25}+\frac{6}{25.31}+\frac{6}{31.37}\right)\)
=\(\frac{1}{6}\left(\frac{1}{1}-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+\frac{1}{19}-\frac{1}{25}+\frac{1}{25}-\frac{1}{31}+\frac{1}{31}-\frac{1}{37}\right)\)
=\(\frac{1}{6}\left(\frac{1}{1}-\frac{1}{37}\right)\)
=\(\frac{1}{6}\left(\frac{37}{37}-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)
\(D=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
\(=\frac{1}{6}\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+\frac{6}{19.25}+\frac{6}{25.31}+\frac{6}{31.37}\right)\)
\(=\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+\frac{1}{19}-\frac{1}{25}+\frac{1}{25}-\frac{1}{31}+\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}\left(1-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{6}{37}\)
ta làm theo cách sau đây :
▬ Min của x² + y²:
Áp dụng bđt bunhiacôpxki cho cặp số x²,y² và 1,1 ta có:
...........(x² + y²)(1 + 1) ≥ (x + y)² ≥ 2² = 4
....<=> (x² + y²) ≥ 2
=> Min x² + y² = 2 <=> x = y = 1
▬ Min của x³ + y³:
Áp dụng bđt Cauchy cho 2 số dương a² và b² ta có:
............x² + y² ≥ 2.x.y
.....<=> -2.x.y ≥ x² + y² ≥ 2
.....<=> -.x.y ≥ 1
Ta có: x³ + y³ = (x + y).(x² + y² - x.y)
=> x³ + y³ ≥ 2.(2 + 1) ≥ 6
=> MIn x³ + y³ = 6 <=> x = y = 1
▬ Min của x^4 + y^4
Áp dụng bđt bunhiacôpxki cho cặp số x^4,y^4 và 1,1 ta có:
...........(x^4 + y^4)(1 + 1) ≥ (x² + y)² ≥ 2² = 4
......=> (x^4 + y^4) ≥ 2
=> Min x^4 + y^4 = 2 <=> x = y = 1
hoặc bạn có thể :
A=1/7 +1/91 +1/247 + 1/475 + 1/775 + 1/1147
A=1/(1.7)+1/(7.13)+1/(13.19)+...+1/(31...
A=(1/6)*( 1 - 1/7 + 1/7 - 1/13 +... +1/31-1/37)
A=(1/6)*(1-1/37)
A=(1/6)*(36/37)
A=6/37
.
B= 1/3 + 1/6 + 1/10 + 1/15 + ... + 1/45
B= 2/(2.3) + 2/(3.4) + 2/(4.5) + ... + 2/(9.10)
B= 2(1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10)
B= 2(1/2-1/10)
B= 4/5
\(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
\(=\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+\frac{1}{13\cdot19}+...+\frac{1}{31\cdot37}\)
\(=\frac{1}{6}\left(\frac{6}{1\cdot7}+\frac{6}{7\cdot13}+\frac{6}{13\cdot19}+...+\frac{6}{31\cdot37}\right)\)
\(=\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...-\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}\left(1-\frac{1}{37}\right)\)
\(=\frac{1}{6}\cdot\frac{36}{37}=\frac{6}{37}\)
Tổng cần tính bằng:\(\frac{1}{1.7}\)+\(\frac{1}{7.13}\)+\(\frac{1}{13.19}\)+\(\frac{1}{19.25}\)+\(\frac{1}{25.31}\)+\(\frac{1}{31.37}\)=(\(\frac{1}{1}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{13}\)+...+\(\frac{1}{31}\)\(\frac{1}{37}\)):3 =(\(1\)-\(\frac{1}{37}\)):3=\(\frac{12}{37}\)
=1/1*7+1/7*13+1/13*19+1/19*25+1/25*31+1/31*37
=1/6(6/1*7+6/7*13+...+6/31*37)
=1/6(1-1/7+1/7-1/13+...+1/31-1/37)
=1/6*36/37=6/37
1/7 +1/91 +1/247 + 1/475 + 1/775 + 1/1147
Đặt A=1/7 +1/91 +1/247 + 1/475 + 1/775 + 1/1147
A=1/(1.7)+1/(7.13)+1/(13.19)+...+1/(31...
A=(1/6)x( 1 - 1/7 + 1/7 - 1/13 +... +1/31-1/37)
A=(1/6)x(1-1/37)
A=(1/6)x(36/37)
A=6/37
tổng các số là:2742
hok tốt