K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 1 2019

\(\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}=\dfrac{1}{3}\left(\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)

\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)

\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)

\(\Rightarrow A=\dfrac{3n}{6\left(3n+2\right)}=\dfrac{n}{6n+4}\)

\(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)\left(2n+3\right)}=\dfrac{1}{4}\left(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)

\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{3.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)

\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)

\(\Rightarrow B=\dfrac{n\left(n+2\right)}{3\left(2n+1\right)\left(2n+3\right)}\)

\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n^2+2n+1}{n^2\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\dfrac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow C=1+\dfrac{1}{1}-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2018}-\dfrac{1}{2019}\)

\(\Rightarrow C=2019-\dfrac{1}{2019}\)

22 tháng 1 2019

@Luân Đào @Nguyễn Việt Lâm

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
NV
18 tháng 9 2021

\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)

Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)

\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)

Cộng vế:

\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)

NV
15 tháng 3 2022

\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)

\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)

Cộng vế:

\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)

\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

19 tháng 12 2021

Áp dụng BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(\text{luôn đúng}\right)\)

Ta có \(\dfrac{a}{a+1}+\dfrac{b}{b+1}+\dfrac{c}{c+1}\ge3\sqrt[3]{\dfrac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

\(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\ge3\sqrt[3]{\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Cộng VTV \(\Leftrightarrow3\ge\dfrac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\sqrt[3]{abc}+1\)

\(\Leftrightarrow VT^2=\sum\left[\dfrac{1}{a\left(b+1\right)}\right]^2\ge3\cdot\sum\dfrac{1}{ab\left(a+1\right)\left(b+1\right)}\\ \Leftrightarrow VT^2\ge3\cdot\dfrac{a^2+b^2+c^2+a+b+c}{abc\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge3\cdot\dfrac{a+b+c+ab+bc+ca}{abc\left(a+1\right)\left(b+1\right)\left(c+1\right)}\\ \Leftrightarrow VT^2\ge\dfrac{3}{abc}-\dfrac{3\left(abc+1\right)}{abc\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{3}{abc}-\dfrac{3\left(abc+1\right)}{abc\left(1+\sqrt[3]{abc}\right)^3}\\ \Leftrightarrow VT^2\ge\dfrac{9}{\sqrt[3]{\left(abc\right)^2}\left(1+\sqrt[3]{abc}\right)^2}=VP^2\\ \LeftrightarrowĐpcm\)

Dấu \("="\Leftrightarrow a=b=c=1\)

24 tháng 1 2022

k làm đc k cần phải ghi zậy mô ha

NV
24 tháng 1 2022

1.

\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)

\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)

\(=\left(x^3-x^2+3x\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)

Hay đa thức trên có thể phân tích thành:

\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)

Dựa vào đó em tự tách cho phù hợp

13 tháng 11 2021

k=6
a,b,c=2

13 tháng 11 2021

chứng minh \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge\left(1+\dfrac{3}{k}\right)^3\) nha bạn