Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=1+3+3^2+...+3^{2018}\)
\(\Rightarrow3A=3.\left(1+3+3^2+...+3^{2018}\right)\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{2019}\)
\(\Rightarrow3A-A=3+3^2+3^3+...+3^{2019}-\left(1+3+3^2+...+3^{2018}\right)\)
\(\Rightarrow2A=3^{2019}-1\)
\(\Rightarrow A=\frac{3^{2019}-1}{2}\)
b) \(B=5+5^2+...+5^{2017}\)
\(\Rightarrow5B=5^2+5^3+...+5^{2018}\)
\(\Rightarrow5B-B=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)
\(\Rightarrow4B=5^{2018}-5\)
\(\Rightarrow B=\frac{5^{2018}-5}{4}\)
a,A=1+3+32+...+32017
3A=3+32+33+...+32018
3A-A=32018-1
2A=32018-1
A=(32018-1):2
`A = 2 + 2^2+ ... + 2^2017`
`=> 2A = 2^2 + 2^3 + ... + 2^2018`
`=> 2A - A = (2^2 + 2^3 + ... + 2^2018) - (2 + 2^2 + ... +2^2017)`
`=> A = 2^2018 - 2`
`B = 1 + 3^2 + ... + 3^2018`
`=> 3^2B = 3^2 + 3^4 + ... + 3^2020`
`=> 9B-B =(3^2 + 3^4 + ... + 3^2020) - (1 + 3^2 + ... + 3^2018`
`=> 8B = 3^2020 - 1`
`=> B = (3^2020 - 1)/8`
`C = 5 + 5^2 - 5^3 + ... + 5^2018`
`=> 5C = 5^2 + 5^3 - 5^4 + ... +5^2019`
`=> 5C + C = ( 5^2 + 5^3 - 5^4 + ... 5^2019) + (5 + 5^2 - 5^3 + ... + 5^2018)`
`=> 6C = 55 + 5^2019`
`=> C = (5^2019 + 55)/6`
\(\left(x+1\right)^3=27\)
\(\left(x+1\right)^3=3^3\)
\(\Rightarrow x+1=3\)
\(x=2\)
\(\left(x+1\right)^3=27\)
\(< =>\left(x+1\right)^3=3.3.3=3^3\)
\(< =>x+1=3< =>x=3-1=2\)
\(\left(2x+3\right)^3=9.81\)
\(< =>\left(2x+3\right)^3=9.9.9\)
\(< =>\left(2x+3\right)^3=9^3\)
\(< =>2x+3=9< =>2x=6\)
\(< =>x=\frac{6}{2}=3\)
a: \(=\left\{145-\left[130-10\right]:2\right\}\cdot5\)
\(=\left\{145-60\right\}\cdot5=85\cdot5=425\)
b: \(=100:\left\{250:\left[450-4\cdot125+4\cdot25\right]\right\}\)
\(=\dfrac{100}{250:\left[450-500+100\right]}=\dfrac{100}{250:50}=\dfrac{100}{5}=20\)
c: \(=355-5\cdot\left[64-\left(27-25\right)\right]=355-5\cdot\left[64-2\right]\)
\(=355-310=45\)
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
B=[(45.79+45.21)]:90-5^2]:5+2^3 B=[(45.79+45.21):90-25]:5+8 B=[(45.(79+21):65]:13 B=[(45.100):65]:13 B=[4500:65]:13 B=4500:65:13
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.
A = 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90
2A = 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100
2A - A = ( 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100 ) - ( 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90 )
A = 2^100 - 2^3
B = 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50
5B = 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51
5B - B = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50 )
4B = 5^51 - 1
B = 5^51 - 1 / 4
\(5^6:5^4+2^3+2^2-1^{2018}\)
\(=5^2+8+4-1\)
\(=25+11\)
\(=36\)
56 : 54 + 23 + 22 - 12018
= 52 + 23 + 22 - 12018
= 25 + 8 + 4 - 1
= 36
Học tốt nhé bạn !
Giải:
a) Đặt:
\(A=1+2^2+2^3+2^4+...+2^{2018}\)
\(\Leftrightarrow2A=2+2^3+2^4+2^5+...+2^{2019}\)
\(\Leftrightarrow2A-A=\left(2+2^{2019}\right)-\left(1+2^2\right)\)
\(\Leftrightarrow A=2+2^{2019}-1-2^2\)
\(\Leftrightarrow A=2+2^{2019}-5\)
\(\Leftrightarrow A=2^{2019}-3\)
Vậy \(A=2^{2019}-3\).
b) Đặt:
\(B=1+5+5^2+5^3+...+5^{2017}\)
\(\Leftrightarrow5B=5+5^2+5^3+5^4+...+5^{2018}\)
\(\Leftrightarrow5B-B=5^{2018}-1\)
\(\Leftrightarrow4B=5^{2018}-1\)
\(\Leftrightarrow B=\dfrac{5^{2018}-1}{4}\)
Vậy \(B=\dfrac{5^{2018}-1}{4}\).
Chúc bạn học tốt!
a)A= 1 + 22+23 + 24 +....+22018
2A = 22 + 23 + 24 +......+22018 + 22019
_
A= 1 + 22+23 + 24 +....+22018
A= 22019 - 1