Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰
⇒ 2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹
⇒ A = 2A - A = (2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰)
= 2²⁰¹¹ - 2⁰
= 2²⁰¹¹ - 1
= B
Vậy A = B
Ta có :
\(A=2+2^2+2^3+2^4...2^{2010}\)\(^0\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=2.3+2^3.3+....+2^{2009}.3\)
\(=3\left(2+2^3+....+2^{2009}\right)⋮3\)
Ta có :
\(2+2^2+2^3+2^4+....+2^{2010}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+....+2^{2008}.7\)
\(=7\left(2+2^4+....+2^{2008}\right)⋮7\)
Vậy \(2^1+2^2+2^3+2^4+...+2^{2010}⋮3\) và \(7\)
\(a,\Rightarrow2A=2+2^2+...+2^{2011}\)
\(\Rightarrow2A-A=2+2^2+...+2^{2011}-2^0-2-..-2^{2010}\)
\(\Rightarrow A=2^{2011}-1=B\)
\(b,A=2019.2011=\left(2010-1\right)\left(2010+1\right)=\left(2010-1\right).2010+\left(2010-1\right)=2010^2-2010+2010-1=2010^2-1< 2010^2=B\)
\(a,\Rightarrow2A=2^1+2^2+...+2^{2011}\\ \Rightarrow2A-A=A=2^{2011}-2^0=2^{2011}-1=B\)
\(b,A=\left(2010-1\right)\left(2010+1\right)=2010^2+2010-2010-1=2010^2-1< 2010^2=B\)
A = 2¹ + 2² + 2³ + ... + 2²⁰¹⁰
= (2¹ + 2²) + (2³ + 2⁴) + ... + (2²⁰⁰⁹ + 2²⁰¹⁰)
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2²⁰⁰⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2²⁰⁰⁹.3
= 3.(2 + 2³ + ... + 2²⁰⁰⁹) ⋮ 3
Vậy A ⋮ 3 (1)
A = 2¹ + 2² + 2³ + ... + 2²⁰¹⁰
= (2¹ + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2²⁰⁰⁸ + 2²⁰⁰⁹ + 2²⁰¹⁰)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2²⁰⁰⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2²⁰⁰⁸.7
= 7.(2 + 2⁴ + ... + 2²⁰⁰⁸) ⋮ 7
Vậy A ⋮ 7 (2)
Từ (1) và (2) ⇒ A ⋮ 3 và A ⋮ 7
a,A=(2+22)+(23+24)+...+(22009+22010)
A=(1+2)(2+23+...+22009)=3(2+...+22009)⋮3
A=(2+22+23)+...+(22008+22009+22010)
A=(1+2+22)(2+...+22008)=7(2+...+22008)⋮7
\(A=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{2008}\right)⋮7\)
Bài 1:
\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)
\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)
Bài 2:
\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)
Giải:
a) A = 21 + 22 + 23 + 24 + .............. + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7
=> A \(⋮\)cả 3 và 7
Vây A \(⋮\)cả 3 và 7
b) B = 31 + 32 + 33 + 34 + ............... + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 32 \(⋮\)4
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13
=> B \(⋮\)cả 4 và 13
Vậy B \(⋮\)cả 4 và 13
c) C = 51 + 52 + 53 + 54 + ................... + 52010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 54 \(⋮\)6
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31
=> C \(⋮\)cả 6 và 31
Vậy C \(⋮\)cả 6 và 31
d) D = 71 + 72 + 73 + 74 + ...................... + 72010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 72 \(⋮\)8
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57
=> D \(⋮\)cả 8 và 57
Vậy D \(⋮\)cả 8 và 57
Học tốt!!!
20+21+22+........+30
= (20+30)+(21+29)+(22+28)+(23+27)+(24+26)+25
= 50x5+25
= 250+25
=275
\(20+21+22+...+28+29+30\)
\(=\left(20+30\right)+\left(21+29\right)+\left(22+28\right)+\left(23+27\right)+\left(24+26\right)+25\)
\(=50\times5+25\)
\(=275\)
A= 2^0 + 2^1 + 2^2 + ... + 2^2010
=> 2A = 2^1 + 2^2 + 2^3 + ... + 2^2011
=> 2A - A = 2^2011 - 2^0
=> A = 2^2011 - 1
A = 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^2010
2A = 2^1 + 2^2 + 2^3 + 2^4 +...+ 2^2011
2A - A = ( 2^1 + 2^2 + 2^3 + 2^4 +...+ 2^2011 ) - ( 1 + 2^2 + 2^3 +...+ 2^2010 )
A = 2^2011 - 1