Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90}\)
\(\text{= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.1}\)
\(\text{= 1/1 - 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10}\)
\(=1/1-1/10-10/10-1/10-9/10\)
Vậy \(\text{ 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 = 9/10}\)
Sửa đề:
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{2}-\dfrac{1}{10}\)
\(=\dfrac{3}{5}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
=1/2.3+1/3.4+1/4.5+......+1/10.11
=1-1/2+1/2-1/3+.....,+1/10-1/11
=1-1/11
=10/11
Tick
Bn ghi đề sai nên mik sửa nha!mik từng làm rồi ko sai đâu
B=-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6
B=-(1/90+1/56+1/42+1/30+1/20+1/12+1/6)
B=-(1/10.9+1/8.9+1/8.7+1/7.6+1/6.5+1/5.4+1/4.3+1/3.2)
B=-(1/10-1/9+1/9-1/8+1/8-1/7+1/7-1/6+1/6-1/5+1/5-1/4+1/4-1/3+1/3-1/2)
B=-(1/10-1/2)
B=2/5
HẾT
\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{38}{5}\)
\(\frac{-1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
= \(-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
=\(-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
=\(-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
=\(-\left(1-\frac{1}{10}\right)=-\left(\frac{9}{10}\right)=-\frac{9}{10}\)
\(\frac{-1}{90}-\frac{-1}{72}-\frac{-1}{56}-\frac{-1}{42}-\frac{-1}{30}-\frac{-1}{20}-\frac{-1}{12}-\frac{-1}{6}-\frac{-1}{2}\)
\(=\frac{-1}{10.9}-\frac{-1}{9.8}-\frac{-1}{8.7}-\frac{-1}{7.6}-\frac{-1}{6.5}-\frac{-1}{5.4}-\frac{-1}{4.3}-\frac{-1}{3.2}-\frac{-1}{2.1}\)
Câu hỏi của Try Build Gundam - Toán lớp 7 - Học toán với OnlineMath
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
B = 1/6 + 1/12 + 1/20 + ... + 1/90
B = 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/9.10
B = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10
B = 1/2 - 1/10
B = 5/10 - 1/10
B = 4/10 = 2/5
Ủng hộ mk nha ♡_♡☆_☆
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+...+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{2}{5}\)