K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2015

   (3/429 - 1/1.3)(3/429 - 1/3.5) ... (3/429 - 1/121.123)

= (1/143 - 1/1.3)(1/143 - 1/3.5) ... (1/143 - 1/11.13) ... (1/143 - 1/121.123)

= (1/11.13 - 1/1.3)(1/11.13 - 1/3.5) ... (1/11.13 -1/11.13) ... (1/11.13 - 1/121.123)

= (1/11.13 - 1/1.3)(1/11.13 - 1/3.5) ... 0 ... (1/11.13 - 1/121.123)

= 0

24 tháng 4 2015

   (3/429 - 1/1.3)(3/429 - 1/3.5) ... (3/429 - 1/121.123)

= (1/143 - 1/1.3)(1/143 - 1/3.5) ... (1/143 - 1/11.13) ... (1/143 - 1/121.123)

= (1/11.13 - 1/1.3)(1/11.13 - 1/3.5) ... (1/11.13 -1/11.13) ... (1/11.13 - 1/121.123)

= (1/11.13 - 1/1.3)(1/11.13 - 1/3.5) ... 0 ... (1/11.13 - 1/121.123)

= 0

24 tháng 4 2015

=(1/143-1/1.3)...(1/143-1/121.123)

vì trong tích có thừa số (1/143-1/11.13)=0

nên cả tích =0

LÀM ƠN LIKE CHO MÌNH ĐI

18 tháng 4 2016

ý là you là học sinh giỏi chứ j
 

18 tháng 4 2016

Nó thì cô giải cho rồi, nó biết là phải

2 tháng 7 2015

\(d=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).........\left(1+\frac{1}{99.101}\right)\)

    \(=\frac{4}{3}.\frac{9}{2.4}.............\frac{10000}{99.101}\)

    \(=\frac{2.2}{3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}............\frac{100.100}{99.101}\)

    \(=\frac{2.3.4..........100}{2.3.4............99}.\frac{2.3.4...........100}{3.4...........101}\)

     \(=100.\frac{2}{101}\)\(=\frac{200}{101}\)

31 tháng 3 2016

\(C=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)

    \(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1993}{1994}\)

    \(=\frac{1\times2\times3\times...\times1993}{2\times3\times4\times...\times1994}\)

    \(=\frac{1}{1994}\)                         (Giản ước còn lại như này)

10 tháng 1 2016

bài b vs c cx phân tích tương tự

10 tháng 1 2016

ai tra loi duoc to se tich 2 dau

19 tháng 3 2019

biết làm bài 1 thôi

\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)

\(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)

lượt bỏ đi còn :

\(\frac{1000}{2}=500\)