Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)
Gọi M là trung điểm AB \(\Rightarrow AB\perp OM\Rightarrow AB\perp\left(SOM\right)\)
\(\Rightarrow\widehat{SMO}\) là góc giữa mặt bên và đáy hay \(\widehat{SMO}=60^0\)
\(SO=OM.tan\widehat{SMO}=\dfrac{a}{2}.tan60^0=\dfrac{a\sqrt{3}}{2}\)
\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.a^2=\dfrac{a^3\sqrt{3}}{6}\)
Gọi H là trung điểm BC \(\Rightarrow AH\perp BC\) và \(AH=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)
Áp dụng định lý Pitago cho tam gaics vuông AA'H:
\(A'H=\sqrt{A'A^2-AH^2}=\dfrac{3a}{2}\)
\(V=A'A.S_{ABC}=\dfrac{3a}{2}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{3a^3\sqrt{3}}{8}\)
Đáp án C
Gọi H là trọng tâm tam giác đều ABC có diện tích S A B C = a 3 2
A 1 cách đều A, B, C
⇒ α = 60 o
Thể tích của hình lăng trụ đã cho: V = \(\dfrac{a^2\sqrt{3}}{4}\).a = \(\dfrac{a^3\sqrt{3}}{4}\).
Tổng diện tích các mặt bên (diện tích xung quanh) của lăng trụ: Sxq = 3a.a = 3a2.
Đáp án C
Gọi hình lăng trụ tam giác ABC.A'B'C' có H là hình chiếu vuông góc của A' lên trên mặt phẳng đáy (ABC).
Ta có A B = 3 , A A ' = 2 3 nên A ' H = A A ' . sin 30 ° = 3
Thể tích khối lăng trụ V A B C . A ' B ' C ' = 3 2 3 4 . 3 = 27 4
Chọn C.
Gọi tên lăng trụ tam giác đều là ABC.A'B'C'.
Ta có: S A B C = a 2 3 4
Theo đề bài ta có:
3 S A B B ' A ' = 3 a 2 ⇔ A B . A A ' = a 2 ⇔ A A ' = a
Ta có thể tích khối lăng trụ ABC.A'B'C' là:
V = A A ' . S A B C = a . a 2 3 4 = a 3 3 4