Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính S=a+b+c+d+e biết
a) c:b=3/2;a/d=1/4;2b=a+c;c-a=26;2a+d=e
b) c:a=7/2;b/d=3/8;d=a+2b;d-a=54;4b+d=2e
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
=> (8a+b-6c+d)-(3a+2b-c-d)-(4a+2b-c+2d)-(4a-2b-3c+d)=4-3-2-1
<=>8a+b-6c+d-3a-2b+c+d-2a-2b+c-2d-4a+2b+3c-d=-2
<=>(8a-3a-2a-4a)+(b-2b-2b+2b)-(6c-c-c-3c)+(d+d-2d-d)=-2
-a-b-c-d=-2
-(a+b+c+d)=-2
=>a+b+c+d=2
Vậy a+b+c+d=2
Theo bài ra , ta có :
\(3a+2b-c-d=1\)
\(2a+2b-c-2d=2\)
\(4a-2b-3c+d=3\)
\(8a+b-6c+d=4\)(1)
Cộng từng vế của 3 biểu thức đầu lại ta đk \(3a+2b-c-d+2a+2b-c-2d+4a-2b-3c+d=1+2+3\)
\(\Leftrightarrow9a+2b-5c+2d=6\)(2)
Trừ phương trình (2) cho phương trình (1) theo từng vế ta đk
\(9a+2b-5c+2d-8a-b+6c-d=6-4=2\)
\(\Leftrightarrow a+b+c+d=2\)
Vậy \(a+b+c+d=2\)
Chúc bạn học tốt =))
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
x <5/6-3/4