Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{2}{1.99}+\dfrac{2}{3.97}+...+\dfrac{2}{51.49}}\)
\(Q=\dfrac{50(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99})}{\dfrac{100}{1.99}+\dfrac{100}{3.97}+...+\dfrac{100}{51.49}}\)
\(Q=\dfrac{50(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99})}{\dfrac{1+99}{1.99}+\dfrac{3+97}{3.97}+...+\dfrac{51+49}{51.49}}\)
\(Q=\dfrac{50(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99})}{\dfrac{1}{99}+1+\dfrac{1}{97}+\dfrac{1}{3}+...+\dfrac{1}{51}+\dfrac{1}{49}}\)
\(Q=\dfrac{50(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99})}{1+\dfrac{1}{3}+...+\dfrac{1}{99}}\)
\(\Rightarrow Q=50\)
Bài 1: Tính tổng 100 số hạng đầu tiên của các dãy sau:
a) \(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{1}{1.2}\\\dfrac{1}{6}=\dfrac{1}{2.3}\\\dfrac{1}{12}=\dfrac{1}{3.4}\\...\end{matrix}\right.\)
Vậy số thứ 100 của dãy là: \(\dfrac{1}{100.101}=\dfrac{1}{10100}\)
Tổng: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{6}=\dfrac{1}{\left(5.0+1\right)\left(5.1+1\right)}\\\dfrac{1}{66}=\dfrac{1}{\left(5.1+1\right)\left(5.2+1\right)}\\\dfrac{1}{176}=\dfrac{1}{\left(5.2+1\right)\left(5.3+1\right)}\\...\end{matrix}\right.\)
Vậy số thứ 100 của dãy là: \(\dfrac{1}{\left(5.99+1\right)\left(5.100+1\right)}=\dfrac{1}{248496}\)
Tổng: \(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{496.501}\)
\(=\dfrac{1}{5}\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{496.501}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{496}-\dfrac{1}{501}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{501}\right)\)
\(=\dfrac{1}{5}.\dfrac{500}{501}\)
\(=\dfrac{100}{501}\)
Bài 2: Tính:
a) \(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)
\(A=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(\dfrac{1}{3}+\dfrac{1}{97}\right)+...+\left(\dfrac{1}{49}+\dfrac{1}{51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)
\(A=\dfrac{\dfrac{100}{1.99}+\dfrac{100}{3.97}+\dfrac{100}{5.95}+...+\dfrac{100}{49.51}}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)
\(A=\dfrac{100\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)
\(\Rightarrow A=\dfrac{100}{2}=50\)
b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)
Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhé
Ta có: \(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1\cdot99}+\dfrac{1}{3\cdot97}+\dfrac{1}{5\cdot95}+...+\dfrac{1}{97\cdot3}+\dfrac{1}{99\cdot1}}\)
\(\Leftrightarrow\dfrac{A}{100}=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{100}{1\cdot99}+\dfrac{100}{3\cdot97}+\dfrac{100}{5\cdot95}+...+\dfrac{100}{97\cdot3}+\dfrac{100}{99\cdot1}}\)
\(\Leftrightarrow\dfrac{A}{100}=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}}{1+\dfrac{1}{99}+\dfrac{1}{3}+\dfrac{1}{97}+\dfrac{1}{5}+\dfrac{1}{95}+...+\dfrac{1}{97}+\dfrac{1}{3}+\dfrac{1}{99}+1}\)
\(\Leftrightarrow\dfrac{A}{100}=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}}{2\left(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}\right)}\)
\(\Leftrightarrow\dfrac{A}{100}=\dfrac{1}{2}\)
hay A=50
a) Ta có
S = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}\)
2S = \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{n.\left(n+1\right).\left(n+2\right)}\)
2S = \(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)2S = \(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)
S = \(\dfrac{1}{4}-\dfrac{1}{\left(n+1\right).\left(n+2\right):2}\)
b) A = \(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{99}\)
A = \(2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
A = \(2-\dfrac{1}{99}\)
A = \(\dfrac{197}{99}\)
c) Ta có
B = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
B = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
B = \(1-\dfrac{1}{100}\)
B = \(\dfrac{99}{100}\)
d) Ta có
C = \(\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)
C = \(1+\left(1+\dfrac{98}{2}\right)+\left(1+\dfrac{97}{3}\right)+...+\left(1+\dfrac{1}{99}\right)\)
C = \(1+50+\dfrac{100}{3}+...+\dfrac{100}{99}\)
C = 51 + 100(\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\))
Đặt D = \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\)
D = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
D = \(\dfrac{1}{2}-\dfrac{1}{99}\)
D = \(\dfrac{97}{198}\)
=> C = 51 + 100.\(\dfrac{97}{198}\)
C = 51 + \(\dfrac{4850}{99}\)
C = \(\dfrac{9899}{99}\)
Đây là bài làm của mình sai thì nx nha
Ta rút gọn phần mẫu:
\(\dfrac{1}{1\cdot99}+\dfrac{1}{3\cdot97}+\dfrac{1}{5\cdot95}+...+\dfrac{1}{97\cdot3}+\dfrac{1}{99\cdot1}\\ =\left(\dfrac{1}{1}+\dfrac{1}{99}\right)+\left(\dfrac{1}{3}+\dfrac{1}{99}\right)+\left(\dfrac{1}{5}+\dfrac{1}{99}\right)+...+\left(\dfrac{1}{3}+\dfrac{1}{97}\right)+\left(\dfrac{1}{1}+\dfrac{1}{99}\right)\\ =\dfrac{2\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)}{100}\\ =\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{50}\)
Vậy:
\(Q=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{1}{1\cdot99}+\dfrac{1}{3\cdot97}+\dfrac{1}{5\cdot95}+...+\dfrac{1}{97\cdot3}+\dfrac{1}{99\cdot1}}\\ =\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)}{50}}\\ =50\)
@Nguyễn Huy Tú, @Hoàng Thị Ngọc Anh, @Tuấn Anh Phan Nguyễn, @Hoang Hung Quan, @ngonhuminh, và các bn khác giúp mk với!!