Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^9-2018x^8+2018x^7-2018x^6+2016x^5-2018x^4+2018x^3-2018x^2+2018x-2018\)
\(A=x^9-\left(2017+1\right)x^8+\left(2017+1\right)x^7-...+\left(2017+1\right)x-\left(2017+1\right)\)
\(A=x^9-\left(x+1\right)x^8+\left(x+1\right)x^7-...+\left(x+1\right)x-x-1\)
\(A=x^9-x^9-x^8+x^8+x^7-...+x^2+x-x-1\)
\(A=-1\)
\(x^4+2018x^2-2018=0\)
Đặt \(x^2=a\left(a\ge0\right)\)
\(a^2+2018a-2018=0\)
\(\Leftrightarrow\left(a+2018a+1009^2\right)-1009^2-2018=0\)
\(\Leftrightarrow\left(a+1009\right)^2-\text{1020099}=0\)
\(\Leftrightarrow\left(a+1009-\sqrt{1020099}\right)\left(a+1009+\sqrt{1020099}\right)=0\)
\(\Leftrightarrow a=\sqrt{1020099}-1009\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{1020099}-1009}\\x=-\sqrt{\sqrt{1020099}-1009}\end{matrix}\right.\)
Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ
Ta có: \(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y\right)\left(x+y-1\right)-12\)
Đặt: \(x+y=t\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12\)
\(=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))
Câu d) Đặt biến phụ
Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)
\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)
\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)
\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)
Đặt \(t=5x^2-2x\)
\(=t\left(t-1\right)-6\)
\(=t^2-t-6\)
\(=t^2-t-9+3\)
\(=\left(t^2-3^2\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào
Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức
Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)
Đặt: \(t=2x^2+x-2\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)
Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)
Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ
Ta có: \(x^2+9y^2-9y-3x+6xy+2\)
\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)
\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)
\(=\left(x+3y\right)\left(x+3y-3\right)+2\)
Đặt \(t=x+3y\)
\(=t\left(t-3\right)+2\)
\(=t^2-3t+2\)
\(=\left(t^2-4\right)-\left(3t-6\right)\)
\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)
\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào
Còn mấy bài sau đang nghiên cứu
Câu a):
ta có (x2-x-2)2+(x-2)2
=((x-2)2(x+1))2+(x-2)2
=(x-2)2(x2+2x+2)
THAY 2018 = xyz vào biểu thức
\(\frac{xyzx}{xy+xyzx+xyz}\) + \(\frac{y}{yz+y+xyz}\)+ \(\frac{z}{xz+z+1}\)
= \(\frac{xz}{1+xz+z}\)+ \(\frac{1}{z+1+xz}\)+ \(\frac{z}{xz+z+1}\)= \(\frac{xz+z+1}{xz+z+1}\)=\(1\)
Đặt \(A=\frac{2018x}{xy+2018x+2018}+\frac{y}{yzz+y+2018}+\frac{z}{xz+z+1}\)
Thay \(xyz=2018\)vào A ta được
\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{1}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz+1+z}{xz+z+1}=1\)
\(B=\frac{x^2-2x+2018}{2018x^2}\)
\(=\frac{1}{2018}-\frac{2}{2018x}+\frac{1}{x^2}\)
\(=\left(\frac{1}{x}-\frac{1}{\sqrt{2018}}\right)^2\ge0\)
Vậy giá trị nhỏ nhất \(B=0\)khi và chỉ khi \(\frac{1}{x}-\frac{1}{\sqrt{2018}}=0\)
\(\Rightarrow\frac{1}{x}=\frac{1}{\sqrt{2018}}\)
\(\Rightarrow x=\sqrt{2018}\)
x2 - 5x = 0
=> x(x - 5) = 0
=> \(\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
b) (3x - 5)2 - 4 = 0
=> (3x - 5)2 = 0 + 4
=> (3x - 5)2 = 4
=> (3x - 5)2 = 22
=> \(\orbr{\begin{cases}3x-5=2\\3x-5=-2\end{cases}}\)
=> \(\orbr{\begin{cases}3x=7\\3x=3\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{7}{3}\\x=1\end{cases}}\)
Giải:
\(2018x+4036=x^2+4x+4\)
\(\Leftrightarrow2018\left(x+2\right)=\left(x+2\right)^2\)
\(\Leftrightarrow2018\left(x+2\right)-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(2018-x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2016-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2016-x=0\end{matrix}\right.\left[{}\begin{matrix}x=-2\\x=2016\end{matrix}\right.\)
Vậy ...
1/Trong các phương trình sau, phương trình nào là phương trình bậc nhất 1 ẩn:
A. 2018x + 2017y = 0
B. 2018x2 + 5 = 0
C. 2017x + 1 = 2018y
D. 2018x +2017 = 0
2/Hình thoi ABCD có dộ dài 2 đường chéo AC=5cm và BD=8cm.Khi đó diện tích của nó là:
Giải:
Diện tích hình thoi là:
\(S=\dfrac{1}{2}\left(d_1.d_2\right)=\dfrac{1}{2}\left(5.8\right)=\dfrac{1}{2}.40=20\left(cm^2\right)\)
Chọn đáp án A.
A. 20cm2
B. 20cm
C. 40cm2
D. 40cm
3/Điều kiện xác định của phương trình 1x−8+2=01x−8+2=0 là:
A.x≠0x≠0
B.x≠−8x≠−8
C.x≠8x≠8
D.x≠8x≠8 và x≠−8x≠−8
4/Tập nghiệm của phương trình x2+2x=0x2+2x=0 là:
Giải:
\(x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Chọn đáp án A
A. {0;−2}{0;−2}
B. {−2;4}{−2;4}
C. {0;2}{0;2}
D. {0;4}
Ta có: x=2017
nên x+1=2018
Ta có: \(P=x^{15}-2018x^{14}+2018x^{13}-2018x^{12}+...+2018x^3-2018x^2+2018x-2018\)
\(=x^{15}-\left(x+1\right)\cdot x^{14}+\left(x+1\right)\cdot x^{13}-\left(x+1\right)\cdot x^{12}+...+\left(x+1\right)\cdot x^3-\left(x+1\right)\cdot x^2+\left(x+1\right)\cdot x-\left(x+1\right)\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}+...+x^3-x^3+x^2-x^2+x-x-1\)
=-1
@ 肖战Daytoy_1005 giup