Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XXét tứ giác AMDN có ^AMD=^MAN=^AND=90∞
⇒AMDN là hình chữ nhật
hcn AMDN có AD là phân giác góc A
⇒AMDN là hình vuông(dấu hiệu 3)
Bài 2:
a: Ta có: \(2x^2+y^2-2xy+x+2=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{7}{4}=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\left(vôlý\right)\)
b: Ta có: \(-x^2-26y^2+10xy-20y-150=0\)
\(\Leftrightarrow x^2-10xy+25y^2+y^2+20y+100+50=0\)
\(\Leftrightarrow\left(x-5y\right)^2+\left(y+10\right)^2+50=0\left(vôlý\right)\)
Bài 1:
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\Leftrightarrow2\left(ab+bc+ca\right)=0-1=-1\)hay \(ab+bc+ca=-\dfrac{1}{2}\Leftrightarrow\left(ab+bc+ca\right)^2=\dfrac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}\)Ta có: \(P=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-2.\dfrac{1}{4}=\dfrac{1}{2}\)Vậy \(P=\dfrac{1}{2}\)
\(x^2-4x-1=0\)
\(\left(x^2-2\cdot x\cdot2+4\right)-5=0\)
\(\left(x-2\right)^2=\left(\sqrt{5}\right)^2\)
\(\Rightarrow x-2=\pm\sqrt{5}\)
Tự giải tiếp nha ...
\(4x^2-4\)
\(=4\left(x^2-1\right)\)
\(=4\left(x-1\right)\left(x+1\right)\)
ab2+ac2+abc+a2b+bc2+abc+a2c+b2c+abc
=ab2+ac2+a2b+bc2+a2c+b2c+3abc
`a)`
`A=(x+1)(2x-1)`
`=2x^{2}+x-1`
`=2(x^{2}+(1)/(2)x-(1)/(2))`
`=2(x^{2}+(1)/(2)x+(1)/(16)-(9)/(16))`
`=2(x+(1)/(4))^{2}-(9)/(8)>= -9/8` với mọi `x`
Dấu `=` xảy ra khi :
`x+(1)/(4)=0<=>x=-1/4`
Vậy `min=-9/8<=>x=-1/4`
``
`b)`
`(4x+1)(2x-5)`
`=8x^{2}-18x-5`
`=8(x^{2}-(9)/(4)x-(5)/(8))`
`=8(x^{2}-(9)/(4)x+(81)/(64)-(121)/(64))`
`=8(x-(9)/(8))^{2}-(121)/(8)>= -(121)/(8)` với mọi `x`
Dấu `=` xảy ra khi :
`x-(9)/(8)=0<=>x=9/8`
Vậy `min=-121/8<=>x=9/8`
\(A=2x^2+x-1=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)
\(A_{min}=-\dfrac{9}{8}\) khi \(x=-\dfrac{1}{4}\)
\(B=8x^2-18x-5=8\left(x-\dfrac{9}{8}\right)^2-\dfrac{121}{8}\ge-\dfrac{121}{8}\)
\(B_{min}=-\dfrac{121}{8}\) khi \(x=\dfrac{9}{8}\)
(x2 _ 1)3 _ (x4 + x2 + 1) (x2 _ 1)
= x6 _ 1 _ ( x6 + x4 + x2 _ x4 _ x2 _ 1)
= x6 _ 1 _ x6 _ x4 _ x2 + x4 + x2 + 1
= 0
\(136^2+16^2-20^2-32\cdot136\\ =\left(136^2-32\cdot136+16^2\right)-20^2\\ =\left(136-16\right)^2-20^2=120^2-20^2\\ =\left(120-20\right)\left(120+20\right)\\ =100\cdot140=14000\)
Tick plz
Ta có: \(B=136^2-32\cdot136+16^2-20^2\)
\(=120^2-20^2\)
\(=100\cdot140=14000\)