Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4047991-2010.2009}{4050000-2011.2009}\)
\(\Rightarrow A=\frac{404791-2010.2009}{4047911+2009-2011.2009}\)
\(\Rightarrow A=\frac{4047911-2010.2009}{4047911-2010.2009}\)
\(\Rightarrow A=1\)
Vậy A = 1
~Study well~
#๖ۣۜNamiko#
4047991- 2010 . 2009 / 4050000 - 2011 . 2009
=9901/9901
=1
\(S=\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{17.20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{20}\)
\(\Rightarrow3S=\frac{9}{20}\)
\(\Rightarrow S=\frac{3}{20}\)
\(S=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{17\cdot20}\)
\(S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(S=\frac{1}{2}-\frac{1}{20}\)
\(S=\frac{9}{20}\)
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}.\left(\frac{4950-1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)
Ủng hộ mk nha!!
\(\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{299.302}\)
\(=2\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+..+\frac{3}{299.302}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{299}-\frac{1}{302}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{302}\right)=2.\frac{75}{151}=\frac{150}{151}\)
\(A=\frac{54.107-53}{53.107+54}=\frac{\left(53+1\right).107-53}{53.107+54}\)
\(=\frac{53.107+107-53}{53.107+54}=\frac{53.107+54}{53.107+54}=1\)
\(B=\frac{135.269-133}{134.269+135}=\frac{\left(134+1\right)269-133}{134.269+135}\)
\(=\frac{134.269+269-133}{134.269+135}=\frac{134.269+136}{134.269+135}>1\)
\(\Rightarrow B>A\)
\(\left(\frac{5}{2014}+\frac{4}{2015}-\frac{3}{2016}\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(\frac{5}{2014}+\frac{4}{2015}-\frac{3}{2016}\right).\left(\frac{1}{6}-\frac{1}{6}\right)\)
\(=\left(\frac{5}{2014}+\frac{4}{2015}-\frac{3}{2016}\right).0=0\)
\(A=\frac{4047991-2010.2009}{4050000-2011.2009}=\frac{4047991-2010.2009}{4050000-\left(2010+1\right).2009}=\frac{4047991-2010.2009}{4050000-\left(2010.2009+1.2009\right)}\)
\(=\frac{4047991-1}{4050000-\left(1+2009\right)}=\frac{4047990}{4050000-2010}=\frac{4047990}{4047990}=1\)