Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}\frac{{13}}{{23}}.\frac{7}{{11}} + \frac{{10}}{{23}}.\frac{7}{{11}}\\ = \frac{7}{{11}}.\left( {\frac{{13}}{{23}} + \frac{{10}}{{23}}} \right)\\ = \frac{7}{{11}}.\frac{23}{23}\\ = \frac{7}{{11}}.1\\ = \frac{7}{{11}}\end{array}\)
b)
\(\begin{array}{l}\frac{5}{9}.\frac{{23}}{{11}} - \frac{1}{{11}}.\frac{5}{9} + \frac{5}{9}\\ = \frac{5}{9}.\left( {\frac{{23}}{{11}} - \frac{1}{{11}} + 1} \right)\\ = \frac{5}{9}.\left( {2 + 1} \right)\\ = \frac{5}{9}.3 = \frac{5}{3}\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( { - \frac{4}{9} + \frac{3}{5}} \right):\frac{{13}}{{17}}} \right] + \left( {\frac{2}{5} - \frac{5}{9}} \right):\frac{{13}}{{17}}\\ = \left( { - \frac{4}{9} + \frac{3}{5}} \right).\frac{{17}}{{13}} + \left( {\frac{2}{5} - \frac{5}{9}} \right).\frac{{17}}{{13}}\\ = \frac{{17}}{{13}}.\left( { - \frac{4}{9} + \frac{3}{5} + \frac{2}{5} - \frac{5}{9}} \right)\\ = \frac{{17}}{{13}}.\left[ {\left( { - \frac{4}{9} - \frac{5}{9}} \right) + \left( {\frac{3}{5} + \frac{2}{5}} \right)} \right]\\ =\frac{{17}}{{13}}. (\frac{-9}{9}+\frac{5}{5})\\= \frac{{17}}{{13}}.\left( { - 1 + 1} \right)\\ = \frac{{17}}{{13}}.0 = 0\end{array}\)
d)
\(\begin{array}{l}\frac{3}{{16}}:\left( {\frac{3}{{22}} - \frac{3}{{11}}} \right) + \frac{3}{{16}}:\left( {\frac{1}{{10}} - \frac{2}{5}} \right)\\ = \frac{3}{{16}}:\left( {\frac{3}{{22}} - \frac{6}{{22}}} \right) + \frac{3}{{16}}:\left( {\frac{1}{{10}} - \frac{4}{{10}}} \right)\\ = \frac{3}{{16}}:\frac{{ - 3}}{{22}} + \frac{3}{{16}}:\frac{{ - 3}}{{10}}\\ = \frac{3}{{16}}.\frac{{ - 22}}{3} + \frac{3}{{16}}.\frac{{ - 10}}{3}\\ = \frac{3}{{16}}.\left( {\frac{{ - 22}}{3} + \frac{{ - 10}}{3}} \right)\\ = \frac{3}{{16}}.\frac{{ - 32}}{3}\\ = - 2\end{array}\)
\(A=\frac{7\times9+14\times27+21\times36}{21\times27+42\times81+63\times108}=\frac{7\times9+7\times2\times9\times3+7\times3\times9\times4}{21\times27+21\times2\times27\times3+21\times3\times27\times4}=\frac{7\times9\times\left(1+2\times3+3\times4\right)}{21\times27\times\left(1+2\times3\times3\times4\right)}=\frac{7\times3\times3}{7\times3\times3\times9}=\frac{1}{9}\)
a.\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\Rightarrow x+1=0\Rightarrow x=-1\)
b.
\(\frac{x+4}{1990}+\frac{x+3}{1991}=\frac{x+2}{1992}+\frac{x+1}{1993}\Rightarrow2+\frac{x+4}{1990}+\frac{x+3}{1991}=2+\frac{x+2}{1992}+\frac{x+1}{1993}\)
\(\Rightarrow\left(1+\frac{x+4}{1990}\right)+\left(1+\frac{x+3}{1991}\right)=\left(1+\frac{x+2}{1992}\right)+\left(1+\frac{x+1}{1993}\right)\)
\(\Rightarrow\frac{x+1994}{1990}+\frac{x+1994}{1991}=\frac{x+1994}{1992}+\frac{x+1994}{1993}\)
\(\Rightarrow\frac{x+1994}{1990}+\frac{x+1994}{1991}-\frac{x+1994}{1992}-\frac{x+1994}{1993}=0\)
\(\Rightarrow\left(x+1994\right)\left(\frac{1}{1990}+\frac{1}{1991}-\frac{1}{1992}-\frac{1}{1993}\right)=0\)
\(\frac{1}{1990}+\frac{1}{1991}-\frac{1}{1992}-\frac{1}{1993}\ne0\Rightarrow x+1994=0\Rightarrow x=-1994\)
\(\frac{3}{17}+\frac{-5}{13}+\frac{14}{17}+\frac{-18}{35}+\frac{17}{-35}+\frac{-8}{13}\)
\(=\left(\frac{3}{17}+\frac{14}{17}\right)-\left(\frac{5}{13}+\frac{8}{13}\right)-\left(\frac{18}{35}+\frac{17}{35}\right)\)
\(=1-1-1\)
\(=-1\)
2. Tìm ba số nguyên dương đôi một khác nhau:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Không mất tính tổng quát: G/s: a>b>c>0
=> \(\frac{1}{a}< \frac{1}{b}< \frac{1}{c}\)
Vì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\); a,b,c là số nguyên dương
=> \(\frac{1}{a}< \frac{1}{b}< \frac{1}{c}< 1\)
=> a>b>c>1 , với a, b, c là số nguyên dương (1)
=> \(1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{1}{c}+\frac{1}{c}+\frac{1}{c}=\frac{3}{c}\)
=> \(1< \frac{3}{c}\Rightarrow c< 3\)
Từ (1) => c=2
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{2}=1\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\)
Do đó: \(\frac{1}{2}=\frac{1}{a}+\frac{1}{b}< \frac{1}{b}+\frac{1}{b}=\frac{2}{b}\)=> b<4 => b=3
Khi đó ta có:
\(\frac{1}{a}+\frac{1}{2}+\frac{1}{3}=1\Rightarrow\frac{1}{a}=\frac{1}{6}\Rightarrow a=6\)
Vậy (a;b;c)=(6;3;2) và các hoán vị của nó