Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1234566\cdot1234568+1234568-1234566\cdot1234568-1234566\)
\(=1234568-1234566\)
\(=2\)
\(B=9876542\cdot9876544+9876544-9876542\cdot9876544-9876542\)
\(=9876544-9876542\)
\(=2\)
Vậy \(A=B\)
a) ( x + 1 ) ( x - 1 )
= ( x2 + 1 )
b) ( x - 2y ) ( x + 2y )
= ( x2 - 4y2 )
c) 56 x 64
= ( 60 - 4 ) ( 60 + 4 )
= 3 600 - 16
= 3 584
`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.
`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`
`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`
`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.
a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)
Thay x-y=7 vào biểu thức (1), ta được:
\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)
Vậy: Khi x-y=7 thì A=100
b) Ta có: \(x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy+10=4\)
\(\Leftrightarrow2xy=-6\)
\(\Leftrightarrow xy=-3\)
Ta có: \(A=x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)
Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:
\(A=2\cdot\left(10+3\right)=2\cdot13=26\)
Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26
\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)
\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)
Ta có:
\(A=x\left(x+y\right)-x\left(y-x\right)=x^2+xy-xy+x^2=2x^2\)
Thay \(x=-3\) vào A, ta có:
\(A=2.\left(-3\right)^2=18\)
Vậy A=18
\(A=x\left(x+y\right)-x\left(y-x\right)=x\left(x+y\right)+x\left(x+y\right)=\left(x+y\right).2x=\left(-3+2\right).2.\left(-3\right)=6\)
a) \(f\left(x\right)+g\left(x\right)+h\left(x\right)\)
\(=6x^7-5x^3+1-3+2x-4x^7-2x^7+2x+7x^2\)
\(=-5x^3+7x^2+4x-2\)
b) \(f\left(x\right)+g\left(x\right)-h\left(x\right)\)
\(=6x^7-5x^3+1-3+2x-4x^7-\left(-2x^7+2x+7x^2\right)\)
\(=2x^7-5x^3+2x-2+2x^7-2x-7x^2\)
\(=4x^7-5x^3-7x^2-2\)
\(a,x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\\ \Leftrightarrow x^3+y^3+3xy\cdot1=1\Leftrightarrow x^3+y^3+3xy=1\)
\(b,x^3-y^3-3xy\\ =x^3-3x^2y+3xy^2-y^3-3xy+3x^2y-3xy^2\\ =\left(x-y\right)^3-3xy\left(x-y-1\right)\\ =1^3-3xy\left(1-1\right)=1-0=1\)
\(c,x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\\ =x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2\\ =x^2+2xy+y^2=\left(x+y\right)^2=1\)
\(9876543.9876545-9876544^2\)
\(=\left(9876544-1\right)\left(9876544+1\right)-9876544^2\)
\(=\left(9876544^2-1\right)-9876544^2\)
\(=9876544^2-1-9876544^2\)
\(=-1\)
9876543 x 9876545 - 98765442
= 9876543 x ( 9876544 + 1 ) - 9876544 x 9876544
= 9876543 x 9876544 + 9876543 - 9876544 x ( 9876543 + 1 )
= 9876543 x 9876544 + 9876543 - 9876544 x 9876543 - 9876544
= - 1