Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhìn tớ
- obichis
- Tổng điểm: 456
- Số kỹ năng đã thực hành: 8
- Điểm hỏi đáp: Tổng: 10000000000000. Tuần này: 1000000
- Xuất sắc(100 điểm):775
Ta có:
\(\frac{3}{11.16}+\frac{3}{16.21}+\frac{3}{21.26}+...+\frac{3}{61.66}\)
\(=\frac{1}{5}.\left(\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}+...+\frac{1}{61.66}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)=\frac{1}{5}.\frac{5}{66}\)
\(=\frac{1}{66}\)
\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{101.103}\)
\(=\frac{2}{5}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5,7}+...+\frac{2}{101.103}\right)\)
\(=\frac{2}{5}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{2}{5}\left(1-\frac{1}{103}\right)\)
\(=\frac{2}{5}.\left(\frac{102}{103}\right)=\frac{204}{515}\)
Nhớ kiểm tra lại cho kl nhé
\(\frac{10}{11}\div\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{9\cdot11}\right)\)
\(=\frac{10}{11}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{10}{11}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}\right)\)
=> sai đề
Giải:
\(B=\dfrac{3}{3\times5}+\dfrac{3}{5\times7}+\dfrac{3}{7\times9}+...+\dfrac{3}{48\times50}\)
\(B=\dfrac{3}{2}\times\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{48\times50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\dfrac{47}{150}\)
\(B=\dfrac{47}{100}\)
Chúc em học tốt!
\(\frac{3}{1x3}+\frac{3}{3x5}+...+\frac{3}{49x51}=\frac{3}{2}\left(\frac{2}{1x3}+\frac{2}{3x5}+...+\frac{2}{49x51}\right)=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)
917749738461936926399639748776398646491639394748947630373937366
M = 3/1x3 + 3/3x5 + 3/5x7 + ... + 3/45x47 + 3/47x49
M = 3/2 x (2/1x3 + 2/3x5 + 2/5x7 + ... + 2/45x47 + 2/47x49)
M = 3/2 x (1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/45 - 1/47 + 1/47 - 1/49)
M = 3/2 x (1 - 1/49)
M = 3/2 x 48/49
M = 72/49
N tính tương tự, nhân N với 5/4
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{2017.2019}\)
\(=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\left(1-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\frac{2018}{2019}\)
\(=\frac{1009}{673}\)
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}.....+\frac{3}{2017.2019}\)
\(=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{2017.2019}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+....+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\frac{2018}{2019}=\frac{1009}{673}\)