Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể : đề ở câu A sửa 51 thành 57
\(\frac{A}{5}=\frac{4}{35.31}+\frac{6}{35.41}+\frac{9}{50.41}+\frac{7}{50.57}=\frac{35-31}{35.31}+\frac{41-35}{35.41}+\frac{50-41}{50.41}+\frac{57-50}{50.57}\)
\(\frac{A}{5}=\frac{1}{31}-\frac{1}{35}+\frac{1}{35}-\frac{1}{41}+\frac{1}{41}-\frac{1}{50}+\frac{1}{50}-\frac{1}{57}=\frac{1}{31}-\frac{1}{57}\)=> A = 5. \(\left(\frac{1}{31}-\frac{1}{57}\right)\)
\(\frac{B}{2}=\frac{7}{38.31}+\frac{5}{38.43}+\frac{3}{43.46}+\frac{11}{46.57}=\frac{38-31}{31.38}+\frac{43-38}{38.43}+\frac{46-43}{43.46}+\frac{57-46}{46.57}\)
\(\frac{B}{2}=\frac{1}{31}-\frac{1}{38}+\frac{1}{38}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}+\frac{1}{46}-\frac{1}{57}=\frac{1}{31}-\frac{1}{57}\)=> B = 2.\(\left(\frac{1}{31}-\frac{1}{57}\right)\)
A/B = 5/2
C = 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/37 - 1/39
= 1/3 - 1/39
= 4/13
Xin lỗi , mình chỉ biết câu C thôi
B = 4/7.31 + 6/7.41 + 9/10.41 + 7/10.57
B/5 = 4/35.31 + 6/ 35.41 + 9/50.41 + 7/50.57
= 1/31 - 1/35 + 1/35 - 1/41 + 1/41 - 1/50 + 1/50 - 1/57
= 1/31 - 1/57
B = (1/31-1/57) .5 = 130/1767
mình ko biết đúng hay sai nữa
đề có pải là A=\(\frac{19^{30}+5}{19^{31}+5}\) ; B=\(\frac{19^{31}+5}{19^{32}+5}\) PẢI KO BẠN
a) \(\frac{3}{8}+\frac{7}{12}+\frac{10}{16}+\frac{10}{24}\)
\(=\frac{3}{8}+\frac{7}{12}+\frac{5}{8}+\frac{5}{12}\)
\(=\left(\frac{3}{8}+\frac{5}{8}\right)+\left(\frac{7}{12}+\frac{5}{12}\right)\)
\(=1+1\)
\(=2\)
b) \(\frac{4}{6}+\frac{7}{13}+\frac{17}{9}+\frac{19}{13}+\frac{1}{9}+\frac{14}{6}\)
\(=\frac{2}{3}+\frac{7}{13}+\frac{17}{9}+\frac{19}{13}+\frac{1}{9}+\frac{7}{3}\)
\(=\left(\frac{2}{3}+\frac{7}{3}\right)+\left(\frac{7}{13}+\frac{19}{13}\right)+\left(\frac{1}{9}+\frac{17}{9}\right)\)
\(=\frac{9}{3}+\frac{26}{13}+\frac{18}{9}\)
\(=3+2+2\)
\(=7\)
\(\frac{2}{3}+\frac{1}{3}.\left(\frac{-4}{9}+\frac{3}{6}\right):\frac{7}{12}\)
\(=\frac{2}{3}+\frac{1}{3}.\frac{1}{18}:\frac{7}{12}\)
\(=\frac{2}{3}+\frac{1}{54}:\frac{7}{12}\)
\(=\frac{2}{3}+\frac{2}{63}\)
\(=\frac{44}{63}\)
~ Hok tốt ~