Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2+22+23+...+262+263
2A=2+22+23+24+...+263+264
2A-A=2+22+23+24+...+263+264-1+2+22+23+...+262+263
A=264-1
A = 1 + 2 + 22 + 23 + ... + 262 + 263
2A = 2 + 22 + 23 + 24 + ... + 263 + 264
A = 264 - 1
`1+2+2^2+2^3+....+2^63`
`=2+2+2^2+2^3+....+2^63-1`
`=2.2+2^2+2^3+....+2^63-1`
`=2^2+2^2+2^3+....+2^63-1`
`=2.2^2+2^3+....+2^63-1`
`=2^3+2^3+...2^63-1`
`=2.2^3+....+2^63-1`
`=2^4+....+2^63-1`
`=2^{63}.2-1=2^64-1`
=\(\left(\dfrac{5}{17}+\dfrac{12}{17}\right)+\left(\dfrac{1}{22}-\dfrac{23}{22}\right)+\dfrac{2}{3}\)
=\(\dfrac{17}{17}-\dfrac{22}{22}+\dfrac{2}{3}\)
=\(1-1+\dfrac{2}{3}\)
=0+\(\dfrac{2}{3}\)
=\(\dfrac{2}{3}\)
Lời giải:
$E=1-2+22-23+24-25+.....+21000$
$=(1-2)+(22-23)+(24-25)+......+(20998-20999)+21000$
$=(-1)+(-1)+(-1)+....+(-1)+21000$
Số lần xuất hiện của -1: $[(20999-22):1+1]:2+1=10490$
$E=(-1).10490+21000=10510$