K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2016

Tính nhanh: \(=\frac{1}{x}-\frac{1}{x+6}\)

24 tháng 11 2017

ta có

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+....+\frac{1}{x+6}\)

\(=\frac{1}{x}-\frac{1}{x+6}\)

17 tháng 12 2017

Ta có:\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}=\frac{1}{x}-\frac{1}{x+6}=\frac{x+6}{x\left(x+6\right)}-\frac{x}{x\left(x+6\right)}=\frac{6}{x\left(x+6\right)}\)k mik nha

17 tháng 12 2017

ĐKXĐ : \(x\ne0;-1;-2;-3;-4;-5;-6\)

Giá trị của của tổng trên rất dễ

Giá trị của nó là:

 \(\frac{1}{x}-\frac{1}{x+6}\)

21 tháng 11 2015

Ta có:  \(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\left(n\in N\right)\)

Như vậy,

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}\)

\(=\frac{1}{x}-\frac{1}{x+5}=\frac{x+5}{x\left(x+5\right)}-\frac{x}{x\left(x+5\right)}=\frac{x+5-x}{x\left(x+5\right)}=\frac{5}{x\left(x+5\right)}\)

21 tháng 11 2015

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)

\(=\frac{1}{x}-\frac{1}{x+6}=\frac{x+6}{x.\left(x+6\right)}-\frac{x}{x.\left(x+6\right)}=\frac{6}{x^2+6x}\)

27 tháng 12 2017

quá dễ tách ra thành 1\x-1\x+1+1\x+1-1\x+2+1\x+2-1\x+3+1\x+3-1\x+4+...+1\x+5-1\x+6

=1\x-1\x+6

=6\x(x+6)

27 tháng 12 2017

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)

\(=\frac{1}{x}-\frac{1}{x+6}\)\(=\frac{6}{x\left(x+6\right)}\)

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

Bài 1:

a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)

\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)

\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)

Suy ra: \(12x-45-12x^2+45x=0\)

\(\Leftrightarrow-12x^2+57x-45=0\)

\(\Leftrightarrow-12x^2+12x+45x-45=0\)

\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)

\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)

\(-3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)

b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)

\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)

Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)

\(\Leftrightarrow-x^2+16x-39=0\)

\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)

\(\Leftrightarrow x^2-13x-3x+39=0\)

\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)

Vậy: Tập nghiệm S={3;13}

c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)

\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)

\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)

Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)

\(\Leftrightarrow-21x^2+26x+11=0\)

\(\Leftrightarrow-21x^2-7x+33x+11=0\)

\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)

27 tháng 5 2020

d) \(\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+3\right)}=\frac{1}{\left(x+2\right)\left(x+3\right)}\)

ĐKXĐ : \(x\ne-2;x\ne-3\)

\(\Leftrightarrow x+3+x+2=1\)

\(\Leftrightarrow2x=-4\)

\(\Leftrightarrow x=-2\) (không nhận)

Vậy : \(S=\varnothing\)

27 tháng 5 2020

Giai phương trình sau :

a) \(\frac{10}{\left(x+5\right)\left(x-1\right)}+\frac{3}{1-x}=\frac{5}{x+5}\)

ĐKXĐ : \(x\ne1;x\ne-5\)

Với điều kiện trên ta có :

\(\Leftrightarrow\)\(\frac{10}{\left(x+5\right)\left(x-1\right)}+\frac{-3}{x-1}=\frac{5}{x+5}\)

\(\Leftrightarrow10-3\left(x+5\right)=5\left(x-1\right)\)

\(\Leftrightarrow10-3x-15=5x-5\)

\(\Leftrightarrow-8x=0\)

\(\Leftrightarrow x=0\) (nhận)

Vậy : \(S=\left\{0\right\}\)

4 tháng 4 2020

ĐK: \(x\notin\left\{-2,-3,-4,-5,-6\right\}\)

\(\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{15}\)

\(\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{15}\)\(\Leftrightarrow\frac{x+6-x-2}{\left(x+6\right)\left(x+2\right)}=\frac{1}{15}\) \(\Leftrightarrow\frac{4}{x^2+8x+12}=\frac{1}{15}\)

\(\Leftrightarrow x^2+8x+12=60\Leftrightarrow x^2+8x-48=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-12\end{matrix}\right.\) (tm)

11 tháng 3 2020

1) \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

<=> \(\frac{21x}{24}-\frac{100\left(x-9\right)}{24}=\frac{80x+6}{24}\)

<=> 21x - 100x + 900 = 80x + 6

<=> -79x - 80x = 6 - 900

<=> -159x = -894

<=> x = 258/53

Vậy S = {258/53}

2) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

<=> \(\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2+2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)

<=> 12x2 + 12x + 3 - 5x2 - 10x - 5 = 7x2 - 14x - 5

<=> 7x2 + 2x - 7x2 + 14x = -5 + 2

<=> 16x = 3

<=> x = 3/16

Vậy S  = {3/16}

11 tháng 3 2020

3) 4(3x - 2) - 3(x - 4) = 7x+  10

<=> 12x - 8 - 3x + 12 = 7x + 10

<=> 9x - 7x = 10 - 4

<=> 2x = 6

<=> x = 3

Vậy S = {3}

4) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)

<=> \(\frac{x^2+14x+40}{12}+\frac{3\left(x^2+2x-8\right)}{12}=\frac{4\left(x^2+8x-20\right)}{12}\)

<=> x2 + 14x + 40 + 3x2 + 6x - 24 = 4x2 + 32x - 80

<=> 4x2 + 20x - 4x2 - 32x = -80 - 16

<=> -12x = -96

<=> x = 8

Vậy S = {8}