Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(15\times\left(\frac{212121}{434343}+\frac{333333}{353535}\right)=15\times\left(\frac{21\times10101}{43\times10101}+\frac{33\times10101}{35\times10101}\right)\)
\(=15\times\left(\frac{21}{43}+\frac{33}{35}\right)=\frac{6462}{301}\)
b) \(\frac{639\times721721}{721\times639639}=\frac{639\times721\times1001}{721\times639\times1001}=1\)
c) \(\frac{327\times412+400}{328\times412-12}=\frac{\left(328-1\right)\times412+400}{328\times412-12}=\frac{328\times412-412+400}{328\times412-12}\)
\(=\frac{328\times412-12}{328\times412-12}=1\)
d) \(9\times\left(\frac{151515}{171717}+\frac{131313}{181818}\right)=9\times\left(\frac{15\times10101}{17\times10101}+\frac{13\times10101}{18\times10101}\right)=9\times\left(\frac{15}{17}+\frac{13}{18}\right)\)
\(=9\times\frac{491}{306}=\frac{491}{34}\)
\(\frac{327\cdot412+400}{328\cdot412-12}\)
\(=\frac{327\cdot412+400}{\left(327+1\right)\cdot412-12}\)
\(=\frac{327\cdot412+400}{327\cdot412+\left(412-12\right)}\)
\(=\frac{327\cdot412+400}{327\cdot412+400}\)
\(=1\)
\(\frac{327\cdot412+400}{328\cdot412-12}=\frac{327\cdot412+400}{\left(327+1\right)\cdot412-12}=\)\(\frac{327\cdot412+400}{327\cdot412+1\cdot412-12}=\frac{327\cdot412+400}{327\cdot412+412-12}=\)\(\frac{327\cdot412+400}{327\cdot412+400}=\frac{1}{1}=1\)
\(\frac{327.412+400}{328.412-12}\) = \(\frac{328.412-412+400}{328.412-12}\)= \(\frac{328.412-\left[412-400\right]}{328.412-12}\) = \(\frac{328.412-12}{328.412-12}\) = 1
a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.....+\frac{5}{27.30}\)
\(=\frac{5}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+........+\frac{1}{27.30}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{27}-\frac{1}{30}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{30}\right)\)
\(=\frac{5}{3}.\frac{29}{30}=\frac{29}{36}\)
Đặt \(A=\frac{12}{3\cdot5}+\frac{12}{5\cdot7}+\frac{12}{7\cdot9}+....+\frac{12}{97\cdot99}\)
\(2A=\frac{12}{3}-\frac{12}{5}+\frac{12}{5}-\frac{12}{7}+...+\frac{12}{97}-\frac{12}{99}\)
\(2A=\frac{12}{3}-\frac{12}{99}\)
\(A=\frac{128}{33}\cdot\frac{1}{2}=\frac{64}{33}\)
\(\frac{1}{12}+\frac{6}{7}+\frac{11}{12}+\frac{1}{7}\)
\(=\left(\frac{1}{12}+\frac{11}{12}\right)+\left(\frac{6}{7}+\frac{1}{7}\right)\)
\(=\frac{12}{12}+\frac{7}{7}\)
\(=1+1\)
\(=2\)
\(\frac{1}{12}\)+\(\frac{6}{7}\)+\(\frac{11}{12}\)+\(\frac{1}{7}\)
= (\(\frac{1}{12}\)+\(\frac{11}{12}\))+(\(\frac{6}{7}\)+\(\frac{1}{7}\))
=1+1
=2
học lâu giờ quên rùi
\(\frac{327.412+400}{328.412-12}=\frac{327.412+400}{\left(327+1\right).412-12}=\frac{327.412+400}{327.412+412-12}=\frac{327.412+400}{327.412+400}=1\)