Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)
S=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{95.97}+\frac{1}{97.99}\)
S=\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{99}\right)\)
S=\(\frac{1}{2}.\left(1-\frac{1}{99}\right)\)
S=\(\frac{1}{2}.\frac{98}{99}\)
S=\(\frac{49}{99}\)
S = 1/3.5 + 1/5.7 + 1/7.9 +...+1/97.99
S = 1 - ( 1/3+1/3-1/5+1/5-+1/7+1/7+...+1/97-1/99)
S = 1 - 1/99
S = 98/99
\(2S=\frac{2}{3.5}+\frac{2}{5.7}+.......+\frac{2}{97.99}\)
\(2S=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{99}\)
\(2S=\frac{1}{3}-\frac{1}{99}\)
\(2S=\frac{33}{99}-\frac{1}{99}\)
\(S=\frac{32}{99}:2\)
\(S=\frac{16}{99}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
Tự tính
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
a) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}\)
\(=\frac{12}{60}+\frac{-5}{60}\)
\(=\frac{7}{60}\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{2}{3}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{33}{99}-\frac{1}{99}\)
\(=\frac{32}{99}\)
a) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-...-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{3}.\frac{98}{99}\)
\(=\frac{98}{297}\)
Chuc bn học tốt
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{99}\)
\(=1-\frac{1}{99}\)
\(=\frac{98}{99}\)
Ta có: \(M=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+......+\frac{2}{97.99}\)
\(M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{97}-\frac{1}{99}\)
\(M=\frac{1}{3}-\frac{1}{99}\)
\(M=\frac{32}{99}\)
\(M=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)
\(M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(M=\frac{1}{3}-\frac{1}{99}\)
\(M=\frac{32}{99}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{87.89}\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{87}-\frac{1}{89}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{89}\right)\)
= \(\frac{1}{2}.\frac{86}{267}=\frac{43}{267}\)
~~~
Đáp số to quá, tớ không chắc là mình đúng đâu.
#Sunrise
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2.\left(1-\frac{1}{99}\right)\)
\(=2.\frac{98}{99}\)
\(=\frac{196}{99}=1\frac{97}{99}\)
=1/3-1/5+1/5-1/7+1/7-1/9+....+1/97-1/99
= 1/3 -1/99
=32/99
tích cho mình nha
=1/3-1/5+1/7-1/7+1/9-1/9+...+1/97-1/99
=1/3-1/99
=32/99