Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(\frac{7}{9}+1\right)\left(\frac{7}{20}+1\right)\left(\frac{7}{33}+1\right)...\left(\frac{7}{10800}+1\right)\)
\(=\frac{16}{9}.\frac{27}{20}.\frac{40}{33}.....\frac{10807}{10800}\)
\(=\frac{2.8}{1.9}.\frac{3.9}{2.10}.\frac{4.10}{3.11}.....\frac{101.107}{100.108}\)
\(=\frac{2.3.4....101}{1.2.3....100}.\frac{8.9.10...107}{9.10.11...108}\)
\(=101.\frac{2}{27}\)\(=\frac{202}{27}\)
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)