K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

1001\(^2\)=(1000+1)\(^2\)=1000\(^2\)-2.1000+1

                            =1000000-2000+1

                           =tự tính

 

4 tháng 10 2015

bài a đơn giản lắm:

99.101 = (100 - 1)(100 + 1)

          = 1002 - 1 ( 12 thì tất nhiên = 1 rồi)

          = 9999 ( số đẹp ghê!)

c) 19952 - 1994.1996 = 1995- (1995 - 1) (1995 + 1)

                               = 19952 - (19952 - 1)

                               = 19952 - 19952 + 1

                               = 1 

26 tháng 6 2015

\(F=\frac{1996^3-1}{1996^2+1997}=\frac{\left(1996-1\right)\left(1996^2+1996+1\right)}{1996^2+1997}=\frac{1995.\left(1996^2+1997\right)}{1996^2+1997}=1995\)

E = \(\frac{1995^3}{1995^2-1994}=\frac{1995^3+1-1}{1995^2-1994}=\frac{\left(1995+1\right)\left(1995^2-1995+1\right)-1}{1995^2-1994}\)

  =\(\frac{1996\left(1995^2-1994\right)-1}{1995^2-1994}=1996-\frac{1}{1995^2-1994}\)

Vì \(1995^2-1994>0\) => \(\frac{1}{1995^2-1994}-1\) =>  \(1996-\frac{1}{1995^2-1994}>1996-1\)

HAy E > F

26 tháng 3 2017

chuẩn luôn

a: \(=1995^2-\left(1995^2-1\right)=1995^2-1995^2+1=1\)

b: \(=18^8-18^8+1=1\)

c: \(=\left(163+37\right)^2=200^2=40000\)

9 tháng 2 2019

Ta có :

\(\dfrac{1997^2-1996^2}{1997^2+1996^2}=\dfrac{1.\left(1997+1996\right)}{1997^2+1996^2}=\dfrac{3993}{1997^2+1996^2}\)

Lại có : \(\dfrac{1}{3993}=\dfrac{3993}{3993^2}\)

Do \(3993^2=\left(1997+1996\right)^2>1997^2+1996^2\)

\(\Rightarrow\dfrac{3993}{3993^2}< \dfrac{3993}{1997^2+1996^2}\)

\(\Rightarrow\dfrac{1}{3993}< \dfrac{1997^2-1996^2}{1997^2+1996^2}\)

12 tháng 12 2017

a)

\(x^4+1996x^2+1995x+1996\)

\(=\left(x^4-x\right)+\left(1996x^2+1996x+1996\right)\)

\(=x\left(x^3-1\right)+1996\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+1996\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+1996\right]\)

\(=\left(x^2+x+1\right)\left(x^2-x+1996\right)\)

b)

\(x^4+1997x^2+1996x+1997\)

\(=\left(x^4-x\right)+\left(1997x^2+1997x+1997\right)\)

\(=x\left(x^3-1\right)+1997\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+1997\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+1997\right]\)

\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)

12 tháng 12 2017

x4+1996x2+1995x+1996

=(x4_x)+(1996x2+1996x+1996)

=x(x3-1)+1996(x2+x+1)

=x(x-1)(x2+x+1)+1996(x2+x+1)

=(x2+x+1)((x2-1)+1996)

=(x2+x+1)((x+1)(x-1)+1996)

Câu 2 tương tự bạn nhé!

=>(x+1/1998+1)+(x+2/1997+1)=(x+3/1996+1)+(x+4/1995+1)

=>x+1999=0

=>x=-1999

12 tháng 3 2020

a/Viết đề mà cx sai đc nữa: \(\left(\frac{x+2}{98}+1\right)\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)\left(\frac{x+5}{95}+1\right)\)

\(\Leftrightarrow\frac{x+100}{98}.\frac{x+100}{97}-\frac{x+100}{96}.\frac{x+100}{95}=0\)

\(\Leftrightarrow\left(x+100\right)^2\left(\frac{1}{98.97}-\frac{1}{96.95}\right)=0\)

\(\Rightarrow x=-100\)

b/\(\Leftrightarrow\left(\frac{x+1}{1998}+1\right)+\left(\frac{x+2}{1997}+1\right)=\left(\frac{x+3}{1996}+1\right)+\left(\frac{x+4}{1995}+1\right)\)

\(\Leftrightarrow\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}=0\)

\(\Leftrightarrow\left(x+1999\right)\left(...\right)=0\Rightarrow x=-1999\)

12 tháng 3 2020

b,\(\frac{x+1}{1998}+\frac{x+2}{1997}=\frac{x+3}{1996}+\frac{x+4}{1995}\)

=>\(\frac{x+1}{1998}+1\frac{x+2}{1997}+1=\frac{x+3}{1996}+1+\frac{x+4}{1995}+1\)

\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}=\frac{x+1999}{1996}+\frac{x+1999}{1995}\)

\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}\)=0

\(\Leftrightarrow\)\(\left(x+1999\right)\left(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\right)\)=0

\(\Leftrightarrow\)x+1999=0(Vì \(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\ne0\))

\(\Leftrightarrow\)x=-1999

Vậy x=-1999

29 tháng 6 2015

A= 1+5+52+53+54+...+51996+51997=\(\left(5-1\right).\left(1+5+5^2+5^3+...+5^{1997}\right).\frac{1}{4}\)

                                                    \(=\left(5^{1998}-1\right)\frac{1}{4}\)