Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(85^2+75^2+65^2+55^2-45^2-35^2-25^2-15^2\)
\(=\left(85^2-15^2\right)+\left(75^2-25^2\right)+\left(65^2-35^2\right)+\left(55^2-45^2\right)\)
\(=\left(85-15\right)\left(85+15\right)+\left(75-25\right)\left(75+25\right)+\left(65-35\right)\left(65+35\right)+\left(55-45\right)\left(55+45\right)\)
\(=70.100+50.100+30.100+10.100\)
\(=7000+5000+3000+1000\)
\(=16000\)
b) \(\frac{135^2+130.135+65^2}{135^2-65^2}\)
\(=\frac{135^2+2.60.135+65^2}{135^2-65^2}\)
\(=\frac{\left(135+65\right)^2}{\left(135-65\right)^2}\)
\(=\frac{200^2}{70^2}\) \(=\frac{200}{70}=\frac{20}{7}\)
964 - 1 = (932 + 1)(932 - 1) = ... = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(9 + 1)(9 - 1) > (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(9 + 1)
964=(932+1).(932-1)
=(932+1)(916+1)(916-1)
=(932+1)(916+1)(98+1)(98-1)
=(932+1)(916+1)(98+1)(94+1)(94-1)
=(932+1)(916+1)(98+1)(94+1)(92+1)(92-1)
=(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)(9-1)
Vì (932+1)(916+1)(98+1)(94+1)(92+1)(9+1)(9-1)>(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)
=>964-1>(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)
\(B=10^2+8^2+...+2^2-\left(9^2+7^2+5^2+3^2+1^2\right)\)
\(B=\left(10^2-9^2\right)+\left(8^2-7^2\right)+...+\left(2^2-1^2\right)\)
\(B=\left(10+9\right)\left(10-9\right)+\left(8+7\right)\left(8-7\right)+...+\left(2-1\right)\left(2+1\right)\)
\(B=19+15+...+3\)
Đến đây dễ rồi. Câu a) đang suy nghĩ
\(A=1+\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+4\cdot\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+\left(5-1\right)\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=4+\left(5^{32}-1\right)\left(5^{32}+1\right)\)
\(4A=4+5^{64}-1\)
\(4A=5^{64}+3\)
\(A=\frac{5^{64}+3}{4}\)
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
a)
$A=(1^2-2^2)+(3^2-4^2)+....+(2003^2-2004^2)+2005^2$
$=(1-2)(1+2)+(3-4)(3+4)+....+(2003-2004)(2003+2004)+2005^2$
$=-(1+2)-(3+4)-...-(2003+2004)+2005^2$
$=-(1+2+3+...+2004)+2005^2=-\frac{2004.2005}{2}+2005^2$
$=2005^2-1002.2005=2005(2005-1002)=2011015$
b)
$B=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^8-1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^{16}-1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^{32}-1)(2^{32}+1)-2^{64}$
$=2^{64}-1-2^{64}=-1$
c) Do $x=16$ nên $x-16=0$
$R(x)=x^4-17x^3+17x^2-17x+20$
$=(x^4-16x^3)-(x^3-16x^2)+x^2-16x-x+20$
$=x^3(x-16)-x^2(x-16)+x(x-16)-x+20$
$=x^3.0-x^2.0+x.0-x+20=-x+20=-16+20=4$
d) Do $x=12$ nên $x-12=0$. Khi đó:
$S(x)=(x^{10}-12x^9)-(x^9-12x^8)+(x^8-12x^7)-....+(x^2-12x)-x+10$
$=x^9(x-12)-x^8(x-12)+x^7(x-12)-....+x(x-12)-x+10$
$=(x-12)(x^9-x^8+x^7-....+x)-x+10$
$=0-x+10=-x+10=-12+10=-2$
chịu