Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{13}{7}-\frac{1}{2}\times\frac{13}{7}+\frac{3}{2}\times\frac{13}{7}\)
\(=\frac{13}{7}\times\left(1-\frac{1}{2}+\frac{3}{2}\right)\)
\(=\frac{13}{7}\times2\)
\(=\frac{26}{7}\)
b) \(\frac{1}{15}\times\left(\frac{3}{7}+\frac{5}{19}\right)+\frac{3}{7}\times\left(\frac{5}{19}-\frac{1}{15}\right)\)
\(=\frac{1}{15}\times\frac{3}{7}+\frac{1}{15}\times\frac{5}{19}+\frac{3}{7}\times\frac{5}{19}-\frac{3}{7}\times\frac{1}{15}\)
\(=\frac{5}{19}\times\left(\frac{1}{15}+\frac{3}{7}\right)\)
\(=\frac{5}{19}\times\frac{52}{105}\)
\(=\frac{52}{399}\)
c) \(\frac{5}{6}+\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+...+\frac{5}{9900}\)
\(=5\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{99\times100}\right)\)
\(=5\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=5\times\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=5\times\frac{49}{100}\)
\(=\frac{49}{20}\)
Lần sau nên đăng ít thôi
a) = 17/19 - 17/19 + 27/35 + 35/35 = 0 + 62/35
b) = 1/3 x 4/5 + 1/3 x6/5 + 1/3 x 2 = 1/3(4/5 + 6/5 + 2) = 1/3 x 4 = = 4/3
c) 4/7 x 2/9 + 4/7 x 7/9 + 2/3 = 4/7 x (2/9 + 7/9) + 2/3 = 4/7 x 1 + 2/3 = 26/21
A) 17/19 - 17/19 + 27/35 + 35/35 = 0 + 62/35
B) 1/3 x 4/5 + 1/3 x 6/5 + 1/3 x 2 = 1/3 x(4/5 + 6/5 x 2 ) = 1/3 x 4 = 4/3
c) TƯƠNG TỰ CÂU A VÀ B
* HOKTOT*
NHA
\(\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right).y=\frac{2}{3}\)
\(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{1}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}.\left(\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{1}{2}.\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\left(1-\frac{1}{11}\right).y=\frac{4}{3}\)
\(\frac{10}{11}.y=\frac{4}{3}\)
\(\Rightarrow y=\frac{22}{15}\)
A = 5 x (\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{9900}\))
A = 5 x ( \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\))
A = 5x( \(\frac{1}{2}-\frac{1}{100}\))
A = \(\frac{49}{20}\)
Gọi tổng trên là A
\(\Leftrightarrow A=5\times\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)
(Tính dãy trong ngoặc) Gọi dãy trong ngoặc là B
\(\Leftrightarrow2B=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\)
\(\Leftrightarrow2B-B=\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\right)-\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)
\(\Leftrightarrow B=\frac{1}{3}-\frac{1}{9900}+0+...+0\)
\(\Leftrightarrow B=\frac{3299}{9900}\)
\(\Rightarrow A=5\times\frac{3299}{9900}\)
\(\Rightarrow A=1,6661616...\approx1,7\)
Đặt A = \(\frac{5}{3}+\frac{5}{15}+\frac{5}{35}+...+\frac{5}{9900}\)
A = \(\frac{5}{1\times3}+\frac{5}{3\times5}+\frac{5}{5\times7}+...+\frac{5}{99\times100}\)
A : 5 x 2 = \(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times100}\)
A : 5 x 2 = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
A : 5 x 2 = \(\frac{1}{1}-\frac{1}{100}\)
A : 5 x 2 = \(\frac{99}{100}\)
A = \(\frac{99}{100}:2\times5\)
A = \(\frac{99}{40}\)